These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 6278476)
1. Transmembranous incorporation of photoelectrically active bacteriorhodopsin in planar lipid bilayers. Bamberg E; Dencher NA; Fahr A; Heyn MP Proc Natl Acad Sci U S A; 1981 Dec; 78(12):7502-6. PubMed ID: 6278476 [TBL] [Abstract][Full Text] [Related]
2. Delipidation of bacteriorhodopsin and reconstitution with exogenous phospholipid. Huang KS; Bayley H; Khorana HG Proc Natl Acad Sci U S A; 1980 Jan; 77(1):323-7. PubMed ID: 6928624 [TBL] [Abstract][Full Text] [Related]
3. Proton transport by bacteriorhodopsin through an interface film. Hwang SB; Korenbrot JI; Stoeckenius W J Membr Biol; 1977 Sep; 36(2-3):137-58. PubMed ID: 561851 [TBL] [Abstract][Full Text] [Related]
4. A measurement of the proton pump current generated by bacteriorhodopsin in black lipid membranes. Herrmann TR; Rayfield GW Biochim Biophys Acta; 1976 Sep; 443(3):623-8. PubMed ID: 963073 [TBL] [Abstract][Full Text] [Related]
6. Photoelectric conversion by bacteriorhodopsin in charged synthetic membranes. Singh K; Korenstein R; Lebedeva H; Caplan SR Biophys J; 1980 Sep; 31(3):393-401. PubMed ID: 7260294 [TBL] [Abstract][Full Text] [Related]
7. Kinetics and stoichiometry of light-induced proton release and uptake from purple membrane fragments, Halobacterium halobium cell envelopes, and phospholipid vesicles containing oriented purple membrane. Lozier RH; Niederberger W; Bogomolni RA; Hwang S; Stoeckenius W Biochim Biophys Acta; 1976 Sep; 440(3):545-56. PubMed ID: 963044 [TBL] [Abstract][Full Text] [Related]
8. Light-induced potential and current across a large bacteriorhodopsin-asolectin planar membrane stabilized on a polyacrylamide gel surface. Setaka M; Satoh N; Kobayashi T; Hongo T; Kwan T; Yamaguchi A; Futai M J Biochem; 1986 Mar; 99(3):777-83. PubMed ID: 2423507 [TBL] [Abstract][Full Text] [Related]
9. Transient photovoltages in purple membrane multilayers. Charge displacement in bacteriorhodopsin and its photointermediates. Hwang SB; Korenbrot JI; Stoeckenius W Biochim Biophys Acta; 1978 May; 509(2):300-17. PubMed ID: 656415 [TBL] [Abstract][Full Text] [Related]
10. Bacteriorhodopsin vesicles. An outline of the requirements for light-dependent H+ pumping. Hellingwerf KJ; Scholte BJ; van Dam K Biochim Biophys Acta; 1978 Oct; 513(1):66-77. PubMed ID: 31174 [TBL] [Abstract][Full Text] [Related]
11. Structural and spectroscopic characteristics of bacteriorhodopsin in air-water interface films. Hwang SB; Korenbrot JI; Stoeckenius W J Membr Biol; 1977 Sep; 36(2-3):115-35. PubMed ID: 561850 [TBL] [Abstract][Full Text] [Related]
15. Photocurrents generated by bacteriorhodopsin adsorbed on nano-black lipid membranes. Horn C; Steinem C Biophys J; 2005 Aug; 89(2):1046-54. PubMed ID: 15908580 [TBL] [Abstract][Full Text] [Related]
16. [Action spectrum of emf--photogeneration by bacteriorhodopsin incorporated into planar phospholipid membranes]. Grigor'ev PA Biofizika; 1980; 25(6):1041-7. PubMed ID: 7448215 [No Abstract] [Full Text] [Related]
17. Photocurrents induced on black lipid membranes by purple membranes: a method of reconstitution and a kinetic study of the photocurrents. Bamberg E; Fahr A Ann N Y Acad Sci; 1980; 358():324-7. PubMed ID: 6938152 [No Abstract] [Full Text] [Related]
18. Temperature dependence of light-induced proton movement in reconstituted purple membrane. Tu SI; Hutchinson H Arch Biochem Biophys; 1984 Feb; 228(2):609-16. PubMed ID: 6320744 [TBL] [Abstract][Full Text] [Related]