These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 6278808)
1. Correlation between acetylcholine-evoked electrical activity, effect of cyclic AMP and actual redox state in frog rectus muscle. Puppi A; Práger P; Dely M Acta Biochim Biophys Acad Sci Hung; 1981; 16(1-2):89-94. PubMed ID: 6278808 [TBL] [Abstract][Full Text] [Related]
2. Relationship between the tissue redox state potential and dak/dt changes of [K+]0 activity during k-strophantoside or acetylcholine induced contractures. Wittmann I; Puppi A; Dely M Acta Physiol Acad Sci Hung; 1982; 60(4):233-6. PubMed ID: 6985315 [TBL] [Abstract][Full Text] [Related]
3. Inverse modulation of extracellular Na+- and K+-activities by ascorbate or methylene blue. Puppi A; Wittmann I; Dely M Gen Physiol Biophys; 1986 Apr; 5(2):187-91. PubMed ID: 3025056 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the redox states of different tissues and the types of acetylcholine effect. Puppi A; Szalay L; Dely M Acta Biochim Biophys Acad Sci Hung; 1976; 11(1):63-73. PubMed ID: 961368 [TBL] [Abstract][Full Text] [Related]
5. Redox agents modulate a(K+)0 changes evoked by acetylcholine and adrenaline in frog heart. Puppi A; Wittmann I; Dely M Acta Physiol Hung; 1990; 76(1):61-9. PubMed ID: 2088012 [TBL] [Abstract][Full Text] [Related]
6. Effect of redox agents on the non-electrolyte isotonic concentrations and on the equivalent pore radius of skeletal muscles of the frog. Dely M; Puppi A; Bédy E; Práger P Acta Physiol Hung; 1985; 65(2):103-8. PubMed ID: 3157293 [TBL] [Abstract][Full Text] [Related]
7. Correlations between the tissue redox-state and K(+)-contractures. Puppi A; Szekeres S; Dely M Acta Physiol Hung; 1990; 75(3):253-9. PubMed ID: 2144094 [TBL] [Abstract][Full Text] [Related]
8. [Correlation between the in vivo dynamics of redox processes and neuronal electrical activity in response to angiotensin II and cyclic AMP]. Sherstnev VV; Samoĭlov MO; Nikitin VP; Semenov DG; Svetlaev IA Fiziol Zh SSSR Im I M Sechenova; 1986 Oct; 72(10):1378-82. PubMed ID: 3023148 [TBL] [Abstract][Full Text] [Related]
9. Influence of the redox-state potential of biophase on electrically stimulated skeletal muscles (myographic and voltage-clamp analysis). Puppi A; Nánási P; Dely M Acta Physiol Hung; 1991; 77(1):33-41. PubMed ID: 1950591 [TBL] [Abstract][Full Text] [Related]
10. Interactions between the redox state of the biophase and the effect of acetylcholine on the activity of (Na+ / K+) ATP-ase in Rana esculenta. Puppi A; Szalay L; Dely M Comp Biochem Physiol C Comp Pharmacol; 1975 Jan; 50(1):75-9. PubMed ID: 240628 [No Abstract] [Full Text] [Related]
11. [Uptake of cyclic adenosine-3,5-monophosphate by cultured mammalian cells and frog muscles]. Kudriavtseva NV; Kornilova ES; Serebriakov VSh; Nikol'skiĭ NN Tsitologiia; 1986 Oct; 28(10):1079-84. PubMed ID: 3027931 [TBL] [Abstract][Full Text] [Related]
12. Microelectrophoysiological analysis of the correlation between the redox state and the type of effect of acetylcholine and/or 5-hydroxytryptamine. Puppi A; Kiss I Acta Physiol Acad Sci Hung; 1973; 44(2):133-43. PubMed ID: 4806137 [No Abstract] [Full Text] [Related]
13. Effect of acetylcholine on ion transport in the frog skeletal muscle. Kovács L; Szücs G; Török I Acta Physiol Acad Sci Hung; 1981; 58(2):93-101. PubMed ID: 6978595 [TBL] [Abstract][Full Text] [Related]
14. Effect of phlorizin on the action potential and voltage-dependent ionic conductances in frog skeletal muscle. Cseri J Acta Physiol Hung; 1984; 64(2):143-55. PubMed ID: 6333779 [TBL] [Abstract][Full Text] [Related]
15. Redox regulation of autorhythmic heart contractions and the effect of acetylcholine failed to manifest itself by decreasing [Ca2+]0. Práger P; Dely M; Puppi A; Gács E Gen Pharmacol; 1982; 13(2):147-51. PubMed ID: 6980163 [TBL] [Abstract][Full Text] [Related]
16. Redox state potential influences (+/-) delta [Na+]o activity values during acetylcholine contractures of frog skeletal muscles. Puppi A; Wittmann I; Dely M Gen Pharmacol; 1982; 13(4):321-5. PubMed ID: 6751931 [TBL] [Abstract][Full Text] [Related]
17. Effect of theophylline and imidazole on cyclic AMP and cyclic GMP levels in active sartorius muscle of Rana esculenta. Fanò G; Della Torre G; Principato GB; Dolcini BM; Orlacchio A Pharmacol Res Commun; 1981 May; 13(5):451-9. PubMed ID: 6270702 [No Abstract] [Full Text] [Related]
18. [Effect of acetylcholine on the structuro-functional characteristics of bush-like interoceptors of the urinary bladder of the frog]. Podol'skaia LA; Solov'ev NA Arkh Anat Gistol Embriol; 1985 Jul; 89(7):28-35. PubMed ID: 3876817 [TBL] [Abstract][Full Text] [Related]
19. Extrajunctional spread of acetylcholine depolarization on frog skeletal muscle membrane. Kovács L; Szücs G; Török I Acta Physiol Acad Sci Hung; 1981; 57(4):365-73. PubMed ID: 6977258 [TBL] [Abstract][Full Text] [Related]
20. Effects of physostigmine on the voltage dependent ionic conductances of skeletal muscle fibres. Szücs G; Kovács L; Cseri J; Gál J Acta Physiol Hung; 1983; 62(1):47-60. PubMed ID: 6316728 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]