These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6279633)

  • 1. Analysis of neurotoxin and mitogen-stimulated sodium transport in human fibroblasts.
    Davis MH; Pato CN; Gruenstein E
    J Biol Chem; 1982 Apr; 257(8):4356-61. PubMed ID: 6279633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perturbation of glycoprotein processing affects the neurotoxin-responsive Na+ channel in neuroblastoma cells.
    Negishi M; Glick MC
    Carbohydr Res; 1986 Jun; 149(1):185-98. PubMed ID: 2425966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetrodotoxin-insensitive sodium channels. Ion flux studies of neurotoxin action in a clonal rat muscle cell line.
    Lawrence JC; Catterall WA
    J Biol Chem; 1981 Jun; 256(12):6213-22. PubMed ID: 6113244
    [No Abstract]   [Full Text] [Related]  

  • 4. Sodium and calcium fluxes in a clonal nerve cell line.
    Stallcup WB
    J Physiol; 1979 Jan; 286():525-40. PubMed ID: 571466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The appearance of voltage-sensitive Na+ channels during the in vitro differentiation of embryonic chick skeletal muscle cells.
    Frelin C; Lombet A; Vigne P; Romey G; Lazdunski M
    J Biol Chem; 1981 Dec; 256(23):12355-61. PubMed ID: 6271783
    [No Abstract]   [Full Text] [Related]  

  • 6. 22Na+ uptake and catecholamine secretion by primary cultures of adrenal medulla cells.
    Amy C; Kirshner N
    J Neurochem; 1982 Jul; 39(1):132-42. PubMed ID: 6283016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurotoxin-sensitive sodium channels in neurons developing in vivo and in vitro.
    Couraud F; Martin-Moutot N; Koulakoff A; Berwald-Netter Y
    J Neurosci; 1986 Jan; 6(1):192-8. PubMed ID: 2418173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rescue of mesencephalic dopaminergic neurons in culture by low-level stimulation of voltage-gated sodium channels.
    Salthun-Lassalle B; Hirsch EC; Wolfart J; Ruberg M; Michel PP
    J Neurosci; 2004 Jun; 24(26):5922-30. PubMed ID: 15229240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence assay for neurotoxin-modulated ion transport by the reconstituted voltage-activated sodium channel isolated from eel electric organ.
    Tomiko SA; Rosenberg RL; Emerick MC; Agnew WS
    Biochemistry; 1986 Apr; 25(8):2162-74. PubMed ID: 2423121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacologic properties of voltage-sensitive sodium channels in chick muscle fibers developing in vitro.
    Catterall WA
    Dev Biol; 1980 Jul; 78(1):222-30. PubMed ID: 6105110
    [No Abstract]   [Full Text] [Related]  

  • 11. Toxin-induced K+ efflux through the Na+ channel of neuroblastoma cells.
    Jacques Y; Romey G; Lazdunski M
    Eur J Biochem; 1980 Oct; 111(1):265-73. PubMed ID: 6108216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental properties of the fast Na+ channel in embryonic cardiac cells using neurotoxins.
    Renaud JF; Romey G; Lombet A; Lazdunski M
    Toxicon; 1982; 20(1):17-25. PubMed ID: 6123160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes.
    Catterall WA
    Annu Rev Pharmacol Toxicol; 1980; 20():15-43. PubMed ID: 6247957
    [No Abstract]   [Full Text] [Related]  

  • 14. Tetrodotoxin-sensitive sodium channels in normal human fibroblasts and normal human glia-like cells.
    Munson R; Westermark B; Glaser L
    Proc Natl Acad Sci U S A; 1979 Dec; 76(12):6425-9. PubMed ID: 293730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sodium channel from rat brain. Reconstitution of neurotoxin-activated ion flux and scorpion toxin binding from purified components.
    Tamkun MM; Talvenheimo JA; Catterall WA
    J Biol Chem; 1984 Feb; 259(3):1676-88. PubMed ID: 6319406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Batrachotoxin as a tool to study voltage-sensitive sodium channels of excitable membranes.
    Khodorov BI
    Prog Biophys Mol Biol; 1985; 45(2):57-148. PubMed ID: 2408296
    [No Abstract]   [Full Text] [Related]  

  • 17. Identification of a tetrodotoxin-sensitive Na+ channel in a variety in fibroblast lines.
    Pouysségur J; Jacques Y; Lazdunski M
    Nature; 1980 Jul; 286(5769):162-4. PubMed ID: 6105618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of phosphatidylinositol turnover in brain synaptoneurosomes: stimulatory effects of agents that enhance influx of sodium ions.
    Gusovsky F; Hollingsworth EB; Daly JW
    Proc Natl Acad Sci U S A; 1986 May; 83(9):3003-7. PubMed ID: 2422664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium-channels in non-excitable glioma cells, shown by the influence of veratridine, scorpion toxin, and tetrodotoxin on membrane potential and on ion transport.
    Reiser G; Hamprecht B
    Pflugers Arch; 1983 Jun; 397(4):260-4. PubMed ID: 6310481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative changes of levels of nitrendipine Ca2+ channels, of tetrodotoxin-sensitive Na+ channels and of ouabain-sensitive (Na+ + K+)-ATPase following denervation of rat and chick skeletal muscle.
    Schmid A; Kazazoglou T; Renaud JF; Lazdunski M
    FEBS Lett; 1984 Jun; 172(1):114-8. PubMed ID: 6329821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.