These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 6279759)

  • 1. Calcium and cyclic GMP regulation of light-sensitive protein phosphorylation in frog photoreceptor membranes.
    Hermolin J; Karell MA; Hamm HE; Bownds MD
    J Gen Physiol; 1982 Apr; 79(4):633-55. PubMed ID: 6279759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-induced dephosphorylation of two proteins in frog rod outer segments: influence of cyclic nucleotides and calcium.
    Polans AS; Hermolin J; Bownds MD
    J Gen Physiol; 1979 Nov; 74(5):595-613. PubMed ID: 229195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A monoclonal antibody to guanine nucleotide binding protein inhibits the light-activated cyclic GMP pathway in frog rod outer segments.
    Hamm HE; Bownds MD
    J Gen Physiol; 1984 Aug; 84(2):265-80. PubMed ID: 6092516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light adaption of the cyclic GMP phosphodiesterase of frog photoreceptor membranes mediated by ATP and calcium ions.
    Kawamura S; Bownds MD
    J Gen Physiol; 1981 May; 77(5):571-91. PubMed ID: 6262431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin.
    Kawamura S
    Nature; 1993 Apr; 362(6423):855-7. PubMed ID: 8386803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of the cyclic GMP phosphodiesterase of frog photoreceptor membranes.
    Robinson PR; Kawamura S; Abramson B; Bownds MD
    J Gen Physiol; 1980 Nov; 76(5):631-45. PubMed ID: 6255064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplitude, kinetics, and reversibility of a light-induced decrease in guanosine 3',5'-cyclic monophosphate in frog photoreceptor membranes.
    Woodruff ML; Bownds MD
    J Gen Physiol; 1979 May; 73(5):629-53. PubMed ID: 222877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of calcium on guanosine 3',5'-cyclic monophosphate levels in frog rod outer segments.
    Polans AS; Kawamura S; Bownds MD
    J Gen Physiol; 1981 Jan; 77(1):41-8. PubMed ID: 6259273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Guanosine 3',5'-cyclic monophosphate and the in vitro physiology of frog photoreceptor membranes.
    Woodruff ML; Bownds D; Green SH; Morrisey JL; Shedlovsky A
    J Gen Physiol; 1977 May; 69(5):667-79. PubMed ID: 194013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of cyclic nucleotide concentrations in photoreceptors: an ATP-dependent stimulation of cyclic nucleotide phosphodiesterase by light.
    Miki N; Keirns JJ; Marcus FR; Freeman J; Bitensky MW
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3820-4. PubMed ID: 4359491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A light-stimulated increase of cyclic GMP in squid photoreceptors.
    Saibil HR
    FEBS Lett; 1984 Mar; 168(2):213-6. PubMed ID: 6327365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of light and calcium on guanosine 5'-triphosphate in isolated frog rod outer segments.
    Biernbaum MS; Bownds MD
    J Gen Physiol; 1979 Dec; 74(6):649-69. PubMed ID: 317090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic nucleotides and GTP analogues stimulate light-induced phosphorylation of octopus rhodopsin.
    Tsuda M; Tsuda T; Hirata H
    FEBS Lett; 1989 Oct; 257(1):38-40. PubMed ID: 2553493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic GMP and the permeability of the disks of the frog photoreceptors.
    Caretta A; Cavaggioni A; Sorbi RT
    J Physiol; 1979 Oct; 295():171-8. PubMed ID: 230335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Molecular mechanisms of photoreception. VI. Cyclic nucleotide- and light-dependent phosphorylation of rod outer segment proteins in the frog retina].
    Krapivinskiĭ GB; Malenev AL; Fesenko EE
    Mol Biol (Mosk); 1987; 21(1):116-24. PubMed ID: 3033471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Role of cyclic GMP in visnal process-activation of cyclic GMP phosphodiesterase by light and ATP (author's transl)].
    Miki N
    Tanpakushitsu Kakusan Koso; 1976 Aug; 21(8):605-11. PubMed ID: 9667
    [No Abstract]   [Full Text] [Related]  

  • 17. Phosphorylation of rhodopsin as a possible mechanism of adaptation.
    Kühn H; McDowell JH; Leser KH; Bader S
    Biophys Struct Mech; 1977 Jun; 3(2):175-80. PubMed ID: 196697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of protein phosphorylations in frog rod outer segments by protein kinase activators. Suppression of light-induced changes in membrane current and cGMP by protein kinase C activators.
    Binder BM; Brewer E; Bownds MD
    J Biol Chem; 1989 May; 264(15):8857-64. PubMed ID: 2542293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of intracellular cyclic GMP concentration by light and calcium in electropermeabilized rod photoreceptors.
    Coccia VJ; Cote RH
    J Gen Physiol; 1994 Jan; 103(1):67-86. PubMed ID: 8169598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-stimulated phosphorylation of rhodopsin in the retina: the presence of a protein kinase that is specific for photobleached rhodopsin.
    Weller M; Virmaux N; Mandel P
    Proc Natl Acad Sci U S A; 1975 Jan; 72(1):381-5. PubMed ID: 164024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.