These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 6279822)

  • 21. Development and aging of cholinergic synapses. II. Continuous growth of acetylcholine and choline levels in autonomic ganglia and iris of the chick.
    Marchi M; Giacobini E
    Dev Neurosci; 1980; 3(1):39-48. PubMed ID: 7408709
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and physiology of developing neuromuscular synapses in culture.
    Takahashi T; Nakajima Y; Hirosawa K; Nakajima S; Onodera K
    J Neurosci; 1987 Feb; 7(2):473-81. PubMed ID: 3029342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activity-induced changes in synaptic release sites at the crayfish neuromuscular junction.
    Wojtowicz JM; Marin L; Atwood HL
    J Neurosci; 1994 Jun; 14(6):3688-703. PubMed ID: 8207482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cholinergic, adrenergic, and purinergic neuromuscular transmission.
    Burnstock G
    Fed Proc; 1977 Sep; 36(10):2434-8. PubMed ID: 196941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of prolonged repetitive stimulation in hemicholinium on the frog neuromuscular junction.
    Ceccarelli B; Hurlbut WP
    J Physiol; 1975 May; 247(1):163-88. PubMed ID: 1079538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The release of acetylcholine from post-ganglionic cell bodies in response to depolarization.
    Johnson DA; Pilar G
    J Physiol; 1980 Feb; 299():605-19. PubMed ID: 6247485
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiological and morphological effects of post-ganglionic axotomy on presynaptic nerve terminals.
    Brenner HR; Johnson EW
    J Physiol; 1976 Aug; 260(1):143-58. PubMed ID: 184271
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Can presynaptic depolarization release transmitter without calcium influx?
    Zucker RS; Landò L; Fogelson A
    J Physiol (Paris); 1986; 81(4):237-45. PubMed ID: 2883310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ARIA is concentrated in the synaptic basal lamina of the developing chick neuromuscular junction.
    Goodearl AD; Yee AG; Sandrock AW; Corfas G; Fischbach GD
    J Cell Biol; 1995 Sep; 130(6):1423-34. PubMed ID: 7559763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development and aging of cholinergic synapses. III. Choline uptake in the developing iris of the chick.
    Marchi M; Hoffman DW; Mussini I; Giacobini E
    Dev Neurosci; 1980; 3(4-6):185-98. PubMed ID: 7460791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of the embryonic neuromuscular synapse of Drosophila melanogaster.
    Broadie KS; Bate M
    J Neurosci; 1993 Jan; 13(1):144-66. PubMed ID: 8093713
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reversible depletion of synaptic vesicles induced by application of high external potassium to the frog neuromuscular junction.
    Gennaro JF; Nastuk WL; Rutherford DT
    J Physiol; 1978 Jul; 280():237-47. PubMed ID: 308538
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Maintained depolarization of synaptic terminals facilitates nerve-evoked transmitter release at a crayfish neuromuscular junction.
    Wojtowicz JM; Atwood HL
    J Neurobiol; 1983 Sep; 14(5):385-90. PubMed ID: 6137513
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Early nerve-muscle synapses in vitro release transmitter over postsynaptic membrane having low acetylcholine sensitivity.
    Cohen SA
    Proc Natl Acad Sci U S A; 1980 Jan; 77(1):644-8. PubMed ID: 6244572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis, storage and release of [14C]acetylcholine in isolated rat diaphragm muscles.
    Potter LT
    J Physiol; 1970 Jan; 206(1):145-66. PubMed ID: 5498453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crayfish neuromuscular facilitation activated by constant presynaptic action potentials and depolarizing pulses.
    Zucker RS
    J Physiol; 1974 Aug; 241(1):69-89. PubMed ID: 4153766
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct measurement of ACh release from exposed frog nerve terminals: constraints on interpretation of non-quantal release.
    Grinnell AD; Gundersen CB; Meriney SD; Young SH
    J Physiol; 1989 Dec; 419():225-51. PubMed ID: 2621630
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Factors affecting the rate of incorporation of a false transmitter into mammalian motor nerve terminals.
    Large WA; Rang HP
    J Physiol; 1978 Dec; 285():1-24. PubMed ID: 217983
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The onset and development of transmission in the chick ciliary ganglion.
    Landmesser L; Pilar G
    J Physiol; 1972 May; 222(3):691-713. PubMed ID: 4338175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrastructural correlates of experimentally altered transmitter release efficacy in frog motor nerve terminals.
    Herrera AA; Grinnell AD; Wolowske B
    Neuroscience; 1985 Nov; 16(3):491-500. PubMed ID: 3879340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.