These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 6279855)

  • 1. Stoichiometry of proton movements coupled to ATP synthesis driven by a pH gradient in Streptococcus lactis.
    Maloney PC; Hansen FC
    J Membr Biol; 1982; 66(1):63-75. PubMed ID: 6279855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP synthesis driven by a protonmotive force in Streptococcus lactis.
    Maloney PC; Wilson TH
    J Membr Biol; 1975-1976; 25(3-4):285-310. PubMed ID: 3650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A protonmotive force drives ATP synthesis in bacteria.
    Maloney PC; Kashket ER; Wilson TH
    Proc Natl Acad Sci U S A; 1974 Oct; 71(10):3896-900. PubMed ID: 4279406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Obligatory coupling between proton entry and the synthesis of adenosine 5'-triphosphate in Streptococcus lactis.
    Maloney PC
    J Bacteriol; 1977 Nov; 132(2):564-75. PubMed ID: 21165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolysis and synthesis of ATP by membrane-bound ATPase from a motile Streptococcus.
    van der Drift C; Janssen DB; van Wezenbeek PM
    Arch Microbiol; 1978 Oct; 119(1):31-6. PubMed ID: 31147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical proton gradient across the cell membrane of Halobacterium halobium: effect of N,N'-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient.
    Michel H; Oesterhelt D
    Biochemistry; 1980 Sep; 19(20):4607-14. PubMed ID: 7426619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between phosphorylation potential and electrochemical H+ gradient during glycolysis in Streptococcus lactis.
    Maloney PC
    J Bacteriol; 1983 Mar; 153(3):1461-70. PubMed ID: 6402498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton motive force-dependent Hoechst 33342 transport by the ABC transporter LmrA of Lactococcus lactis.
    van den Berg van Saparoea HB; Lubelski J; van Merkerk R; Mazurkiewicz PS; Driessen AJ
    Biochemistry; 2005 Dec; 44(51):16931-8. PubMed ID: 16363806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A transmembrane electrical potential generated by respiration is not equivalent to a diffusion potential of the same magnitude for ATP synthesis by Bacillus firmus RAB.
    Guffanti AA; Fuchs RT; Schneier M; Chiu E; Krulwich TA
    J Biol Chem; 1984 Mar; 259(5):2971-5. PubMed ID: 6699003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [ATP synthesis in Staphylococcus aureus cells during induction of membrane potentials and proton gradient].
    Vinnikov AI
    Biokhimiia; 1988 May; 53(5):853-5. PubMed ID: 2458773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton-coupled accumulation of galactoside in Streptococcus lactis 7962.
    Kashket ER; Wilson TH
    Proc Natl Acad Sci U S A; 1973 Oct; 70(10):2866-9. PubMed ID: 4200725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution of ATP-dependent calcium transport from streptococci.
    Ambudkar SV; Lynn AR; Maloney PC; Rosen BP
    J Biol Chem; 1986 Nov; 261(33):15596-600. PubMed ID: 3096992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exogenous energy supply to the plasma membrane of dark anaerobic cyanobacterium Anacystis nidulans: thermodynamic and kinetic characterization of the ATP synthesis effected by an artificial proton motive force.
    Peschek GA; Hinterstoisser B; Riedler M; Muchl R; Nitschmann WH
    Arch Biochem Biophys; 1986 May; 247(1):40-8. PubMed ID: 3010879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-proton-motive-force-dependent sodium efflux from the ruminal bacterium Streptococcus bovis: bound versus free pools.
    Strobel HJ; Russell JB
    Appl Environ Microbiol; 1989 Oct; 55(10):2664-8. PubMed ID: 2481426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenosine triphosphate synthesis by electrochemical proton gradient in vesicles reconstituted from purified adenosine triphosphatase and phospholipids of thermophilic bacterium.
    Sone N; Yoshida M; Hirata H; Kagawa Y
    J Biol Chem; 1977 May; 252(9):2956-60. PubMed ID: 16011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protonmotive force as the source of energy for adenosine 5'-triphosphate synthesis in Escherichia coli.
    Wilson DM; Alderette JF; Maloney PC; Wilson TH
    J Bacteriol; 1976 Apr; 126(1):327-37. PubMed ID: 4427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP synthesis by the F0F1 ATP synthase from thermophilic Bacillus PS3 reconstituted into liposomes with bacteriorhodopsin. 2. Relationships between proton motive force and ATP synthesis.
    Pitard B; Richard P; Duñach M; Rigaud JL
    Eur J Biochem; 1996 Feb; 235(3):779-88. PubMed ID: 8654429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton translocation coupled to the oxidation of carbon monoxide to CO2 and H2 in Methanosarcina barkeri.
    Bott M; Thauer RK
    Eur J Biochem; 1989 Feb; 179(2):469-72. PubMed ID: 2537211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-driven proton translocations in Halobacterium halobium.
    Bogomolni RA; Baker RA; Lozier RH; Stoeckenius W
    Biochim Biophys Acta; 1976 Jul; 440(1):68-88. PubMed ID: 7322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of adenosine triphosphate by an artificially imposed electrochemical proton gradient in bovine heart submitochondrial particles.
    Thayer WS; Hinkle PC
    J Biol Chem; 1975 Jul; 250(14):5330-5. PubMed ID: 237916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.