These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 6280011)
41. Reconstitution of turkey erythrocyte beta-adrenergic receptors into human erythrocyte acceptor membranes. Demonstration of guanine nucleotide regulation of agonist affinity. Jeffery DR; Charlton RR; Venter JC J Biol Chem; 1980 Jun; 255(11):5015-8. PubMed ID: 6246093 [TBL] [Abstract][Full Text] [Related]
42. beta-Adrenergic receptors and catecholamine sensitive adenylate cyclase in developing rat ventricular myocardium: effect of thyroid status. Whitsett JA; Pollinger J; Matz S Pediatr Res; 1982 Jun; 16(6):463-9. PubMed ID: 6285264 [TBL] [Abstract][Full Text] [Related]
43. Use of cell fusion techniques to probe the mechanism of catecholamine-induced desensitization of adenylate cyclase in frog erythrocytes. Pike LJ; Lefkowitz RJ Biochim Biophys Acta; 1980 Oct; 632(3):354-65. PubMed ID: 6251915 [TBL] [Abstract][Full Text] [Related]
44. Correlation of beta-adrenergic receptor-stimulated [3H]GDP release and adenylate cyclase activation. Differences between frog and turkey erythrocyte membranes. Pike LJ; Lefkowitz RJ J Biol Chem; 1981 Mar; 256(5):2207-12. PubMed ID: 6257708 [No Abstract] [Full Text] [Related]
45. The turkey erythrocyte beta-adrenergic receptor couples to both adenylate cyclase and phospholipase C via distinct G-protein alpha subunits. James SR; Vaziri C; Walker TR; Milligan G; Downes CP Biochem J; 1994 Dec; 304 ( Pt 2)(Pt 2):359-64. PubMed ID: 7998968 [TBL] [Abstract][Full Text] [Related]
46. Inhibition of hormone-stimulated adenylate cyclase activity after altering turkey erythrocyte phospholipid composition with a nonspecific lipid transfer protein. Phosphatidylinositol uncouples catecholamine binding from adenylate cyclase activation. McOsker CC; Weiland GA; Zilversmit DB J Biol Chem; 1983 Nov; 258(21):13017-26. PubMed ID: 6630218 [TBL] [Abstract][Full Text] [Related]
47. Affinity chromatography of the beta-adrenergic receptor from turkey erythrocytes. Vauquelin G; Geynet P; Hanoune J; Strosberg AD Eur J Biochem; 1979 Aug; 98(2):543-56. PubMed ID: 226363 [TBL] [Abstract][Full Text] [Related]
48. Phosphorylation of the beta-adrenergic receptor in intact cells: relationship to heterologous and homologous mechanisms of adenylate cyclase desensitization. Sibley DR; Daniel K; Strader CD; Lefkowitz RJ Arch Biochem Biophys; 1987 Oct; 258(1):24-32. PubMed ID: 2444163 [TBL] [Abstract][Full Text] [Related]
49. Effect of changes in thyroid state on atrial alpha- and beta-adrenoceptors, adenylate cyclase activity, and catecholamine levels in the rat. Ishac EJ; Pennefather JN; Handberg GM J Cardiovasc Pharmacol; 1983; 5(3):396-405. PubMed ID: 6191138 [TBL] [Abstract][Full Text] [Related]
51. Lateral mobility of beta-receptors involved in adenylate cyclase activation. Atlas D; Volsky DJ; Levitzki A Biochim Biophys Acta; 1980 Mar; 597(1):64-9. PubMed ID: 6245689 [TBL] [Abstract][Full Text] [Related]
52. Dissociation of beta-adrenergic receptors from hormone responsiveness during maturation of the rat reticulocyte. Bilezikian JP Biochim Biophys Acta; 1978 Aug; 542(2):263-73. PubMed ID: 210835 [TBL] [Abstract][Full Text] [Related]
53. Functional modification of the guanine nucleotide regulatory protein after desensitization of turkey erythrocytes by catecholamines. Briggs MM; Stadel JM; Iyengar R; Lefkowitz RJ Arch Biochem Biophys; 1983 Jul; 224(1):142-51. PubMed ID: 6307146 [TBL] [Abstract][Full Text] [Related]
54. A comparison of the beta-adrenergic receptor of the turkey erythrocyte with mammalian beta1 and beta2 receptors. Minneman KP; Weiland GA; Molinoff PB Mol Pharmacol; 1980 Jan; 17(1):1-7. PubMed ID: 6247636 [No Abstract] [Full Text] [Related]
55. Slow GDP dissociation from the guanyl nucleotide site of turkey erythrocyte membranes is not the rate limiting step in the activation of adenylate cylase by beta-adrenergic receptors. Levitzki A FEBS Lett; 1980 Jun; 115(1):9-10. PubMed ID: 6248377 [No Abstract] [Full Text] [Related]
56. Biochemical characterization of the beta-adrenergic receptor of the frog erythrocyte. Caron MG; Limbird LE; Lefkowitz RJ Mol Cell Biochem; 1979 Dec; 28(1-3):45-66. PubMed ID: 231201 [TBL] [Abstract][Full Text] [Related]
57. Isolation of adenylate cyclase-free, beta-adrenergic receptor from turkey erythrocyte membranes by affinity chromatography. Vauquelin G; Geynet P; Hanoune J; Strosberg AD Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3710-4. PubMed ID: 198798 [TBL] [Abstract][Full Text] [Related]
58. Desensitization of adenylate cyclase and down regulation of beta adrenergic receptors after in vivo administration of beta agonist. Scarpace PJ; Abrass IB J Pharmacol Exp Ther; 1982 Nov; 223(2):327-31. PubMed ID: 6127402 [TBL] [Abstract][Full Text] [Related]
59. Adrenergic regulation of lipolysis in fat cells from hyperthyroid and hypothyroid patients. Wahrenberg H; Wennlund A; Arner P J Clin Endocrinol Metab; 1994 Apr; 78(4):898-903. PubMed ID: 8157718 [TBL] [Abstract][Full Text] [Related]
60. High potency congeners of isoproterenol. Binding to beta-adrenergic receptors, activation of adenylate cyclase and stimulation of intracellular cyclic AMP synthesis. Schramm M; Eimerl S; Goodman M; Verlander MS; Khan MM; Melmon K Biochem Pharmacol; 1986 Aug; 35(16):2805-9. PubMed ID: 3017363 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]