BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 6280544)

  • 1. Pleiotropic expression of catabolic operons in the absence of the cAMP-CAP complex: the case of the maltose regulon.
    Guidi-Rontani C; Danchin A; Ullmann A
    Ann Microbiol (Paris); 1982 Jan; 133A(1):81-5. PubMed ID: 6280544
    [No Abstract]   [Full Text] [Related]  

  • 2. Role of the catabolite activator protein in the expression of the maltose regulon of Escherichia coli.
    Chapon C
    Ann Microbiol (Paris); 1982 Jan; 133A(1):77-80. PubMed ID: 6280543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic AMP (cAMP) and cAMP receptor protein influence both synthesis and uptake of extracellular autoinducer 2 in Escherichia coli.
    Wang L; Hashimoto Y; Tsao CY; Valdes JJ; Bentley WE
    J Bacteriol; 2005 Mar; 187(6):2066-76. PubMed ID: 15743955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Action of CAP on the malT promoter in vitro.
    Chapon C; Kolb A
    J Bacteriol; 1983 Dec; 156(3):1135-43. PubMed ID: 6315676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of mutations damaging cyclic adenosine-3',5'-monophosphate receptor protein on the expression of catabolic operons in Escherichia coli delta ptsH K12].
    Glezina ML; Bol'shakova TN; Gershanovich VN
    Mol Gen Mikrobiol Virusol; 1985 Jul; (7):24-6. PubMed ID: 3916230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the catabolite activator protein in the maltose regulon of Escherichia coli.
    Chapon C
    J Bacteriol; 1982 May; 150(2):722-9. PubMed ID: 7040340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indirect effects of the 3'-5' cyclic adenosine monophosphate binding protein (CAP) on the transcription of the malPQ operon in Escherichia coli.
    Gutierrez C; Chapon C; Schwartz M
    Biochimie; 1985 Jan; 67(1):145-8. PubMed ID: 2986727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential expression of mal genes under cAMP and endogenous inducer control in nutrient-stressed Escherichia coli.
    Notley L; Ferenci T
    Mol Microbiol; 1995 Apr; 16(1):121-9. PubMed ID: 7651130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional control of polarity in Escherichia coli by cAMP.
    Guidi-Rontani C; Danchin A; Ullmann A
    Mol Gen Genet; 1984; 195(1-2):96-100. PubMed ID: 6092868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolite gene regulation of the L-arabinose operon in Escherichia coli with indoleacetic acid and other indole derivatives.
    Kline EL; Brown CS; Bankaitis V; Montefiori DC; Craig K
    Proc Natl Acad Sci U S A; 1980 Apr; 77(4):1768-72. PubMed ID: 6246502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. crpX mutants of Escherichia coli K12: specific regulatory effects of altered cyclic AMP receptor proteins.
    Guiso N; Joseph E; Daniel J
    Mol Gen Genet; 1982; 187(2):291-6. PubMed ID: 6294464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network regulation of the Escherichia coli maltose system.
    Schlegel A; Böhm A; Lee SJ; Peist R; Decker K; Boos W
    J Mol Microbiol Biotechnol; 2002 May; 4(3):301-7. PubMed ID: 11931562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osmoregulation of the maltose regulon in Escherichia coli.
    Bukau B; Ehrmann M; Boos W
    J Bacteriol; 1986 Jun; 166(3):884-91. PubMed ID: 2423504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of mRNA of malB operons at specific stages in the cell cycle of Escherichia coli.
    Ohki M; Ogawa H; Nishimura S
    Ann Microbiol (Paris); 1982 Jan; 133A(1):71-5. PubMed ID: 7041748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the CRP regulon using in vitro and in vivo transcriptional profiling.
    Zheng D; Constantinidou C; Hobman JL; Minchin SD
    Nucleic Acids Res; 2004; 32(19):5874-93. PubMed ID: 15520470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relief of catabolite repression in a cAMP-independent catabolite gene activator mutant of Escherichia coli.
    Karimova G; Ladant D; Ullmann A
    Res Microbiol; 2004 Mar; 155(2):76-9. PubMed ID: 14990258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential control by IHF and cAMP of two oppositely oriented genes, hpt and gcd, in Escherichia coli: significance of their partially overlapping regulatory elements.
    Izu H; Ito S; Elias MD; Yamada M
    Mol Genet Genomics; 2002 Jan; 266(5):865-72. PubMed ID: 11810262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Orientation and stability of messenger RNA from maltose operons of Escherichia coli K12].
    Clément JM
    Ann Microbiol (Paris); 1982; 133(2):175-87. PubMed ID: 6184005
    [No Abstract]   [Full Text] [Related]  

  • 19. [Genetic nature of an Escherichia coli mutant characterized by high basal levels of catabolite-sensitive enzymes in a study using glucose as the carbon source].
    Smirnov IuV; Sukhodolets VV
    Genetika; 1982 May; 18(5):736-42. PubMed ID: 7047301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently).
    Plumbridge J
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):371-80. PubMed ID: 11361067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.