These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 6280589)
1. The action of cardiotoxins on cardiac plasma membranes. Lazdunski M; Renaud JF Annu Rev Physiol; 1982; 44():463-73. PubMed ID: 6280589 [No Abstract] [Full Text] [Related]
2. Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Catterall WA Annu Rev Pharmacol Toxicol; 1980; 20():15-43. PubMed ID: 6247957 [No Abstract] [Full Text] [Related]
3. Batrachotoxin as a tool to study voltage-sensitive sodium channels of excitable membranes. Khodorov BI Prog Biophys Mol Biol; 1985; 45(2):57-148. PubMed ID: 2408296 [No Abstract] [Full Text] [Related]
5. The interaction of sea anemone and scorpion neurotoxins with tetrodotoxin-resistant Na+ channels in rat myoblasts. A comparison with Na+ channels in other excitable and non-excitable cells. Frelin C; Vigne P; Schweitz H; Lazdunski M Mol Pharmacol; 1984 Jul; 26(1):70-4. PubMed ID: 6146926 [TBL] [Abstract][Full Text] [Related]
6. Tetrodotoxin-insensitive sodium channels. Ion flux studies of neurotoxin action in a clonal rat muscle cell line. Lawrence JC; Catterall WA J Biol Chem; 1981 Jun; 256(12):6213-22. PubMed ID: 6113244 [No Abstract] [Full Text] [Related]
8. Inhibition of voltage-sensitive sodium channels in neuroblastoma cells by antiarrhythmic drugs. Catterall WA Mol Pharmacol; 1981 Sep; 20(2):356-62. PubMed ID: 6272093 [No Abstract] [Full Text] [Related]
9. Spatial relations of the neurotoxin binding sites on the sodium channel. Angelides K; Terakawa S; Brown GB Ann N Y Acad Sci; 1986; 479():221-37. PubMed ID: 2433993 [No Abstract] [Full Text] [Related]
10. Differential effects of lipid-soluble toxins on sodium channels and L-type calcium channels in frog ventricular cells. Furue T; Yakehiro M; Seyama I Hiroshima J Med Sci; 1997 Mar; 46(1):43-50. PubMed ID: 9114566 [TBL] [Abstract][Full Text] [Related]
11. A pharmacological approach to the structure of sodium channels in myelinated axons. Ritchie JM Annu Rev Neurosci; 1979; 2():341-62. PubMed ID: 395883 [TBL] [Abstract][Full Text] [Related]
12. Fluctuation of Na and K currents in excitable membranes. Neumcke B Int Rev Neurobiol; 1982; 23():35-67. PubMed ID: 6288607 [No Abstract] [Full Text] [Related]
13. Cooperative activation of action potential Na+ ionophore by neurotoxins. Catterall WA Proc Natl Acad Sci U S A; 1975 May; 72(5):1782-6. PubMed ID: 1057169 [TBL] [Abstract][Full Text] [Related]
14. [New findings on the mechanism of action of blocking toxins on electrically excitable sodium channels]. Sorokina ZA; Chizhmakov IV Neirofiziologiia; 1987; 19(5):694-708. PubMed ID: 2451790 [TBL] [Abstract][Full Text] [Related]
15. Sodium channels blocked by aphantoxin obtained from the blue-green alga, Aphanizomenon flos-aquae. Adelman WJ; Fohlmeister JF; Sasner JJ; Ikawa M Toxicon; 1982; 20(2):513-6. PubMed ID: 6281943 [No Abstract] [Full Text] [Related]
16. Lipid-soluble toxins thought to be specific for Na+ channels block Ca2+ channels in neuronal cells. Romey G; Lazdunski M Nature; 1982 May; 297(5861):79-8. PubMed ID: 6280075 [No Abstract] [Full Text] [Related]
17. Bioterrorism: toxins as weapons. Anderson PD J Pharm Pract; 2012 Apr; 25(2):121-9. PubMed ID: 22523138 [TBL] [Abstract][Full Text] [Related]
19. [Pharmacologic analysis of sodium channel inactivation in a nerve fiber membrane]. Khodorov BI Neirofiziologiia; 1980; 12(3):317-31. PubMed ID: 6105626 [TBL] [Abstract][Full Text] [Related]
20. Poisonous and venomous marine animals and their toxins. Russell FE Ann N Y Acad Sci; 1975 Jan; 245():57-64. PubMed ID: 242249 [No Abstract] [Full Text] [Related] [Next] [New Search]