These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 6280774)

  • 1. Enhanced production of hydroxyl radicals by the xanthine-xanthine oxidase reaction in the presence of lactoferrin.
    Bannister JV; Bannister WH; Hill HA; Thornalley PJ
    Biochim Biophys Acta; 1982 Mar; 715(1):116-20. PubMed ID: 6280774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions, and an enzymatic generating system.
    Ambruso DR; Johnston RB
    J Clin Invest; 1981 Feb; 67(2):352-60. PubMed ID: 6780607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxyl radical is not a product of the reaction of xanthine oxidase and xanthine. The confounding problem of adventitious iron bound to xanthine oxidase.
    Britigan BE; Pou S; Rosen GM; Lilleg DM; Buettner GR
    J Biol Chem; 1990 Oct; 265(29):17533-8. PubMed ID: 2170383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of human serum transferrin and milk lactoferrin on hydroxyl radical formation from superoxide and hydrogen peroxide.
    Baldwin DA; Jenny ER; Aisen P
    J Biol Chem; 1984 Nov; 259(21):13391-4. PubMed ID: 6092375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalysis of the Haber-Weiss reaction by iron-diethylenetriaminepentaacetate.
    Egan TJ; Barthakur SR; Aisen P
    J Inorg Biochem; 1992 Dec; 48(4):241-9. PubMed ID: 1336036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence against transition metal-independent hydroxyl radical generation by xanthine oxidase.
    Lloyd RV; Mason RP
    J Biol Chem; 1990 Oct; 265(28):16733-6. PubMed ID: 2170352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superoxide dismutase-like activities of copper(II) complexes tested in serum.
    Huber KR; Sridhar R; Griffith EH; Amma EL; Roberts J
    Biochim Biophys Acta; 1987 Sep; 915(2):267-76. PubMed ID: 2820500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide-dependent formation of hydroxyl radical catalyzed by transferrin.
    Motohashi N; Mori I
    FEBS Lett; 1983 Jun; 157(1):197-9. PubMed ID: 6305716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxyl radical formation and iron-binding proteins. Stimulation by the purple acid phosphatases.
    Sibille JC; Doi K; Aisen P
    J Biol Chem; 1987 Jan; 262(1):59-62. PubMed ID: 3025217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vanadate-mediated hydroxyl radical generation from superoxide radical in the presence of NADH: Haber-Weiss vs Fenton mechanism.
    Shi X; Dalal NS
    Arch Biochem Biophys; 1993 Dec; 307(2):336-41. PubMed ID: 8274019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutrophil degranulation inhibits potential hydroxyl-radical formation. Relative impact of myeloperoxidase and lactoferrin release on hydroxyl-radical production by iron-supplemented neutrophils assessed by spin-trapping techniques.
    Britigan BE; Hassett DJ; Rosen GM; Hamill DR; Cohen MS
    Biochem J; 1989 Dec; 264(2):447-55. PubMed ID: 2557840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interaction of reduced glutathione with active oxygen species generated by xanthine-oxidase-catalyzed metabolism of xanthine.
    Ross D; Cotgreave I; Moldéus P
    Biochim Biophys Acta; 1985 Sep; 841(3):278-82. PubMed ID: 2992602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model studies of the iron-catalysed Haber-Weiss cycle and the ascorbate-driven Fenton reaction.
    Burkitt MJ; Gilbert BC
    Free Radic Res Commun; 1990; 10(4-5):265-80. PubMed ID: 1963164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Singlet oxygen generation in the superoxide reaction.
    Mao Y; Zang L; Shi X
    Biochem Mol Biol Int; 1995 May; 36(1):227-32. PubMed ID: 7663419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leukotriene B4, C4, D4 and E4 inactivation by hydroxyl radicals.
    Henderson WR; Klebanoff SJ
    Biochem Biophys Res Commun; 1983 Jan; 110(1):266-72. PubMed ID: 6301443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin-trapping of superoxide ion by a water-soluble, nitroso-aromatic spin-trap.
    Ozawa T; Hanaki A
    Biochem Biophys Res Commun; 1986 Apr; 136(2):657-64. PubMed ID: 3010990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of formaldehyde and acetone by hydroxyl-radical generating systems during the metabolism of tertiary butyl alcohol.
    Cederbaum AI; Qureshi A; Cohen G
    Biochem Pharmacol; 1983 Dec; 32(23):3517-24. PubMed ID: 6316986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xanthine oxidase induced depolymerization of hyaluronic acid in the presence of ferritin.
    Carlin G; Djursäter R
    FEBS Lett; 1984 Nov; 177(1):27-30. PubMed ID: 6094241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biologically active cyanine dyes as probes for the identification of active oxygen species.
    Hori H; Nakagawa Y; Ojima H; Niijima T; Terada H
    Adv Exp Med Biol; 1992; 317():255-60. PubMed ID: 1337657
    [No Abstract]   [Full Text] [Related]  

  • 20. Pyridoindole stobadine is a potent scavenger of hydroxyl radicals.
    Stefek M; Benes L
    FEBS Lett; 1991 Dec; 294(3):264-6. PubMed ID: 1661687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.