These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 6280774)

  • 21. [Participation of iron in OH-radical formation in a system generating a superoxide anion-radical].
    Osipov AN; Savov VM; Zubarev VE; Azizova OA; Vladimirov IuA
    Biofizika; 1981; 26(2):193-7. PubMed ID: 6266504
    [No Abstract]   [Full Text] [Related]  

  • 22. The influence of porphyrins on iron-catalysed generation of hydroxyl radicals.
    Van Steveninck J; Boegheim JP; Dubbelman TM; Van der Zee J
    Biochem J; 1988 Feb; 250(1):197-201. PubMed ID: 2833235
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Importance of hydroxyl radical in the vanadium-stimulated oxidation of NADH.
    Keller RJ; Coulombe RA; Sharma RP; Grover TA; Piette LH
    Free Radic Biol Med; 1989; 6(1):15-22. PubMed ID: 2536340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates: is it a mechanism for hydroxyl radical production in biochemical systems?
    Halliwell B
    FEBS Lett; 1978 Aug; 92(2):321-6. PubMed ID: 212302
    [No Abstract]   [Full Text] [Related]  

  • 25. Styrene oxidation to styrene oxide by hydroxyl radicals produced during reaction of xanthine with xanthine oxidase in the presence of Fe3+.
    Belvedere G; Tursi F
    Toxicol Lett; 1983 Apr; 16(1-2):123-9. PubMed ID: 6301106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lactoferrin-catalysed hydroxyl radical production. Additional requirement for a chelating agent.
    Winterbourn CC
    Biochem J; 1983 Jan; 210(1):15-9. PubMed ID: 6303309
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bleomycin-iron damage to DNA with formation of 8-hydroxydeoxyguanosine and base propenals. Indications that xanthine oxidase generates superoxide from DNA degradation products.
    Gutteridge JM; West M; Eneff K; Floyd RA
    Free Radic Res Commun; 1990; 10(3):159-65. PubMed ID: 1697821
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Are lactoferrin and transferrin promoters of hydroxyl-radical generation?
    Aruoma OI; Halliwell B
    Biochem J; 1987 Jan; 241(1):273-8. PubMed ID: 3032157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potential of methylene blue to block oxygen radical generation in reperfusion injury.
    Kelner MJ; Bagnell R; Hale B; Alexander NM
    Basic Life Sci; 1988; 49():895-8. PubMed ID: 2855011
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ferritin and superoxide-dependent lipid peroxidation.
    Thomas CE; Morehouse LA; Aust SD
    J Biol Chem; 1985 Mar; 260(6):3275-80. PubMed ID: 2982854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Its role in degradation of hyaluronic acid by a superoxide-generating system.
    Halliwell B
    FEBS Lett; 1978 Dec; 96(2):238-42. PubMed ID: 215454
    [No Abstract]   [Full Text] [Related]  

  • 32. Iron and xanthine oxidase catalyze formation of an oxidant species distinguishable from OH.: comparison with the Haber-Weiss reaction.
    Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1986 Jan; 244(1):27-34. PubMed ID: 3004338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scavenging effect of berbamine on active oxygen radicals in phorbol ester-stimulated human polymorphonuclear leukocytes.
    Ju HS; Li XJ; Zhao BL; Han ZW; Xin WJ
    Biochem Pharmacol; 1990 Jun; 39(11):1673-8. PubMed ID: 2160816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of xanthine/xanthine oxidase generated reactive oxygen species on synaptic transmission.
    Colton C; Yao J; Grossman Y; Gilbert D
    Free Radic Res Commun; 1991; 14(5-6):385-93. PubMed ID: 1663906
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensitive electrochemical measurement of hydroxyl radical generation induced by the xanthine-xanthine oxidase system.
    Tatsumi H; Tsuchiya Y; Sakamoto K
    Anal Biochem; 2014 Dec; 467():22-7. PubMed ID: 25180984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pentoxifylline. A hydroxyl radical scavenger.
    Freitas JP; Filipe PM
    Biol Trace Elem Res; 1995; 47(1-3):307-11. PubMed ID: 7779563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidation of DMSO and methanesulfinic acid by the hydroxyl radical.
    Scaduto RC
    Free Radic Biol Med; 1995 Feb; 18(2):271-7. PubMed ID: 7744311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Luminol chemiluminescence using xanthine and hypoxanthine as xanthine oxidase substrates.
    Radi R; Rubbo H; Thomson L; Prodanov E
    Free Radic Biol Med; 1990; 8(2):121-6. PubMed ID: 2158934
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative identification of superoxide anion as a negative inotropic species.
    Schrier GM; Hess ML
    Am J Physiol; 1988 Jul; 255(1 Pt 2):H138-43. PubMed ID: 2839994
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative effects of iron chelators on hydroxyl radical production by the superoxide-driven fenton reaction.
    Smith JB; Cusumano JC; Babbs CF
    Free Radic Res Commun; 1990; 8(2):101-6. PubMed ID: 2156748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.