These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 6281432)

  • 21. Hydrogen peroxide and superoxide production by peripheral blood monocytes in leprosy.
    Sharp AK; Banerjee DK
    Clin Exp Immunol; 1985 Apr; 60(1):203-6. PubMed ID: 2988833
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissociation by piroxicam of degranulation and superoxide anion generation from decrements in chlortetracycline fluorescence of activated human neutrophils.
    Edelson HS; Kaplan HB; Korchak HM; Smolen JE; Weissmann G
    Biochem Biophys Res Commun; 1982 Jan; 104(1):247-53. PubMed ID: 6280690
    [No Abstract]   [Full Text] [Related]  

  • 23. Human monocyte chemotaxis in vitro. Influence of in vitro variables in the filter assay.
    Nielsen H; Olesen Larsen S
    Acta Pathol Microbiol Immunol Scand C; 1983 Apr; 91(2):109-15. PubMed ID: 6349251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of neutrophil inflammatory mediator release: chemotactic peptide activation of stimulus-dependent cytotoxicity.
    English D; Lukens JN
    J Immunol; 1983 Feb; 130(2):850-6. PubMed ID: 6294178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of extracellular calcium on superoxide release by rat alveolar macrophages.
    Forman HJ; Nelson J
    J Appl Physiol Respir Environ Exerc Physiol; 1983 May; 54(5):1249-53. PubMed ID: 6305896
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemotactically responsive and nonresposive forms of a continuous human monocyte cell line.
    Fischer DG; Pike MC; Koren HS; Snyderman R
    J Immunol; 1980 Jul; 125(1):463-5. PubMed ID: 7381208
    [No Abstract]   [Full Text] [Related]  

  • 27. [Granulomatous disease and superoxide anion (author's transl)].
    Burniat W; Mandelbaum I
    Rev Med Brux; 1981 Mar; 2(3):175-80. PubMed ID: 6262894
    [No Abstract]   [Full Text] [Related]  

  • 28. Activation of human monocyte functions by tumor necrosis factor: rapid priming for enhanced release of superoxide and erythrophagocytosis, but no direct triggering of superoxide release.
    Kitagawa S; Yuo A; Yagisawa M; Azuma E; Yoshida M; Furukawa Y; Takahashi M; Masuyama J; Takaku F
    Exp Hematol; 1996 Mar; 24(4):559-67. PubMed ID: 8608807
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidative processes in human promonocytic cells (THP-1) after differentiation into macrophages by incubation with Chlamydia pneumoniae extracts.
    Mouithys-Mickalad A; Deby-Dupont G; Nys M; Lamy M; Deby C
    Biochem Biophys Res Commun; 2001 Sep; 287(3):781-8. PubMed ID: 11563864
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of ubiquinone-50 as the major methylated nonpolar lipid in human monocytes. Regulation of its biosynthesis via methionine-dependent pathways and relationship to superoxide production.
    Bougnoux P; Bonvini E; Stevenson HC; Markey S; Zatz M; Hoffman T
    J Biol Chem; 1983 Apr; 258(7):4339-44. PubMed ID: 6300082
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stimulation of oxygen consumption and superoxide anion production in pulmonary macrophages by N-formyl methionyl peptides.
    Holian A; Daniele RP
    FEBS Lett; 1979 Dec; 108(1):47-50. PubMed ID: 230084
    [No Abstract]   [Full Text] [Related]  

  • 32. Role of transmethylation in the elicitation of an oxidative burst in macrophages.
    Pick E; Mizel D
    Cell Immunol; 1982 Sep; 72(2):277-85. PubMed ID: 6295642
    [No Abstract]   [Full Text] [Related]  

  • 33. Exocytosis induced in neutrophils by chemotactic agents and other stimuli.
    Dewald B; Bretz U; Baggiolini M
    Agents Actions Suppl; 1983; 12():371-82. PubMed ID: 6404146
    [No Abstract]   [Full Text] [Related]  

  • 34. N-formylmethionyl-leucyl-[3H]phenylalanine binding, superoxide release, and chemotactic responses of human blood monocytes that repopulate the circulation during leukapheresis.
    Alteri E; Leonard EJ
    Blood; 1983 Oct; 62(4):918-23. PubMed ID: 6309289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of macrophage mannosyl-specific receptors by cultivation on immobilized zymosan. Effects on superoxide-anion release and phagocytosis.
    Berton G; Gordon S
    Immunology; 1983 Aug; 49(4):705-15. PubMed ID: 6307868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidative degradation of leukotriene C4 by human monocytes and monocyte-derived macrophages.
    Neill MA; Henderson WR; Klebanoff SJ
    J Exp Med; 1985 Nov; 162(5):1634-44. PubMed ID: 3932580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement of human neutrophil oxygen consumption by chemotactic factors.
    Tanabe A; Kobayashi Y; Usui T
    Experientia; 1983 Jun; 39(6):604-6. PubMed ID: 6852196
    [No Abstract]   [Full Text] [Related]  

  • 38. Chemotaxis, spreanding nd oxidative metabolism of neutrophils: influence of albumin in vitro.
    Valerius NH
    Acta Pathol Microbiol Immunol Scand C; 1983 Feb; 91(1):43-9. PubMed ID: 6306991
    [TBL] [Abstract][Full Text] [Related]  

  • 39. B cell lines as models for inherited phagocytic diseases: abnormal superoxide generation in chronic granulomatous disease and giant granules in Chediak-Higashi syndrome.
    Volkman DJ; Buescher ES; Gallin JI; Fauci AS
    J Immunol; 1984 Dec; 133(6):3006-9. PubMed ID: 6092465
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HIV-1-infected monocytes and monocyte-derived macrophages are impaired in their ability to produce superoxide radicals.
    Howell AL; Groveman DS; Wallace PK; Fanger MW
    Int J Clin Lab Res; 1997; 27(2):111-7. PubMed ID: 9266281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.