These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 6281435)
1. Microelectrode studies of the effect of lanthanum on the electrical potential and resistance of outer and inner cell membranes of isolated frog skin. Goudeau H; Wietzerbin J; Mintz E; Gingold MP; Nagel W J Membr Biol; 1982; 66(2):123-32. PubMed ID: 6281435 [TBL] [Abstract][Full Text] [Related]
2. Ouabain on active transepithelial sodium transport in frog skin: studies with microelectrodes. Helman SI; Nagel W; Fisher RS J Gen Physiol; 1979 Jul; 74(1):105-27. PubMed ID: 314494 [TBL] [Abstract][Full Text] [Related]
3. Basolateral membrane potential and conductance in frog skin exposed to high serosal potassium. Klemperer G; Garcia-Diaz JF; Nagel W; Essig A J Membr Biol; 1986; 90(1):89-96. PubMed ID: 3486296 [TBL] [Abstract][Full Text] [Related]
4. Effects of antidiuretic hormone upon electrical potential and resistance of apical and basolateral membranes of frog skin. Nagel W J Membr Biol; 1978 Sep; 42(2):99-122. PubMed ID: 309008 [TBL] [Abstract][Full Text] [Related]
5. Selective block of calcium current by lanthanum in single bullfrog atrial cells. Nathan RD; Kanai K; Clark RB; Giles W J Gen Physiol; 1988 Apr; 91(4):549-72. PubMed ID: 2455767 [TBL] [Abstract][Full Text] [Related]
6. Influence of membrane polarization and hormonal stimulation on the action of lanthanum on frog skin sodium permeability. Wietzerbin J; Goudeau H; Gary-Bobo CM Pflugers Arch; 1977 Aug; 370(2):145-53. PubMed ID: 303349 [TBL] [Abstract][Full Text] [Related]
7. Contribution of junctional conductance to the cellular voltage-divider ratio in frog skins. Nagel W; Garcia-Diaz JF; Essig A Pflugers Arch; 1983 Dec; 399(4):336-41. PubMed ID: 6607457 [TBL] [Abstract][Full Text] [Related]
8. The dependence of the electrical potentials across the membranes of the frog skin upon the concentration of sodium in the mucosal solution. Nagel W J Physiol; 1977 Aug; 269(3):777-96. PubMed ID: 302335 [TBL] [Abstract][Full Text] [Related]
9. Role of basolateral membrane conductance in the regulation of transepithelial sodium transport across frog skin. Nagel W; Katz U Pflugers Arch; 2003 May; 446(2):198-202. PubMed ID: 12739157 [TBL] [Abstract][Full Text] [Related]
10. Effects of mucosal lanthanum on electrical parameters of isolated frog skin. Mechanism of action. Goudeau H; Wietzerbin J; Gary-Bobo CM Pflugers Arch; 1979 Feb; 379(1):71-80. PubMed ID: 571104 [TBL] [Abstract][Full Text] [Related]
11. Microelectrode studies of the active Na transport pathway of frog skin. Helman SI; Fisher RS J Gen Physiol; 1977 May; 69(5):571-604. PubMed ID: 301179 [TBL] [Abstract][Full Text] [Related]
12. Cell K activity in frog skin in the presence and absence of cell current. García-Díaz JF; Baxendale LM; Klemperer G; Essig A J Membr Biol; 1985; 85(2):143-58. PubMed ID: 3874286 [TBL] [Abstract][Full Text] [Related]
13. Insulin action on electrophysiological properties of apical and basolateral membranes of frog skin. Schoen HF; Erlij D Am J Physiol; 1987 Apr; 252(4 Pt 1):C411-7. PubMed ID: 3551625 [TBL] [Abstract][Full Text] [Related]
14. Electrogenic active proton pump in Rana esculenta skin and its role in sodium ion transport. Ehrenfeld J; Garcia-Romeu F; Harvey BJ J Physiol; 1985 Feb; 359():331-55. PubMed ID: 2582114 [TBL] [Abstract][Full Text] [Related]