These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 6281823)

  • 21. Anti-serotonin action in combination with noradrenaline-stimulating action is important for inhibiting muricide in midbrain raphe-lesioned rats.
    Yamamoto T; Ohno M; Takao K; Ueki S
    Neuropharmacology; 1988 Feb; 27(2):123-7. PubMed ID: 3352870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of chronic administration of antidepressants on mouse-killing behavior (muricide) in olfactory bulbectomized rats.
    Shibata S; Nakanishi H; Watanabe S; Ueki S
    Pharmacol Biochem Behav; 1984 Aug; 21(2):225-30. PubMed ID: 6541341
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of the dorsal and median raphe in the inhibition of muricide.
    Waldbillig RJ
    Brain Res; 1979 Jan; 160(2):341-6. PubMed ID: 570081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regional changes in brain norepinephrine content in relation to mouse-killing behavior by rats.
    Yoshimura H; Ueki S
    Brain Res Bull; 1981 Aug; 7(2):151-5. PubMed ID: 6268251
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 8-OH-DPAT in the median raphe, dorsal periaqueductal gray and corticomedial amygdala nucleus decreases, but in the medial septal area it can increase maternal aggressive behavior in rats.
    De Almeida RM; Lucion AB
    Psychopharmacology (Berl); 1997 Dec; 134(4):392-400. PubMed ID: 9452182
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Effects of septal, amygdaloid, striatal, nigral, and olfactory lesions on apomorphine-induced intraspecific aggressive behavior in the rat].
    Senault B
    Psychopharmacologia; 1973; 28(1):13-25. PubMed ID: 4736631
    [No Abstract]   [Full Text] [Related]  

  • 27. Mouse-killing behavior (muricide) induced by delta 9-tetrahydrocannabinol in the rat.
    Ueki S; Fujiwara M; Ogawa N
    Physiol Behav; 1972 Oct; 9(4):585-7. PubMed ID: 4677621
    [No Abstract]   [Full Text] [Related]  

  • 28. The inhibitory modulation of agonistic behavior in the rat brain: a review.
    Albert DJ; Walsh ML
    Neurosci Biobehav Rev; 1982; 6(2):125-43. PubMed ID: 7048154
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of early amygdaloid lesions on the development of reactivity in the rat.
    Eclancher F; Karli P
    Physiol Behav; 1979 Jun; 22(6):123-34. PubMed ID: 573912
    [No Abstract]   [Full Text] [Related]  

  • 30. Effects of psychotropic drugs on delta 9-tetrahydrocannabinol-induced long-lasting muricide.
    Fujiwara M; Ibii N; Kataoka Y; Ueki S
    Psychopharmacology (Berl); 1980; 68(1):7-13. PubMed ID: 6104841
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxytocin microinjected into the central amygdaloid nuclei exerts anti-aggressive effects in male rats.
    Calcagnoli F; Stubbendorff C; Meyer N; de Boer SF; Althaus M; Koolhaas JM
    Neuropharmacology; 2015 Mar; 90():74-81. PubMed ID: 25437825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effects of early amygdaloid lesions on the initiation of interspecies aggression in the rat(author's transl)].
    Eclancher F; Schmitt P; Karli P
    Physiol Behav; 1975 Mar; 14(3):277-83. PubMed ID: 1169784
    [No Abstract]   [Full Text] [Related]  

  • 33. Effects of long-term isolation on aggressive behavior and excitability of the rat with olfactory bulbectomy.
    Gomita Y; Ueki S
    Life Sci; 1979 Jun; 24(26):2455-60. PubMed ID: 573361
    [No Abstract]   [Full Text] [Related]  

  • 34. Thalamoamygdaloid projections in the rat: a test of the amygdala's role in sensory processing.
    Turner BH; Herkenham M
    J Comp Neurol; 1991 Nov; 313(2):295-325. PubMed ID: 1765584
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of mouse-killing behavior by S-adenosyl-L-methionine in midbrain raphe-lesioned and olfactory-bulbectomized rats.
    Yamamoto T; Yatsugi S; Ohno M; Ueki S
    Pharmacol Biochem Behav; 1989 Oct; 34(2):395-8. PubMed ID: 2622996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CB1 cannabinoid receptor-mediated aggressive behavior.
    Rodriguez-Arias M; Navarrete F; Daza-Losada M; Navarro D; Aguilar MA; Berbel P; MiƱarro J; Manzanares J
    Neuropharmacology; 2013 Dec; 75():172-80. PubMed ID: 23916480
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Behavioral effects of medial-dorsal thalamic, mediobasal hypothalamic and amygdaloid lesions in the rat].
    Stanzani S; Russo A
    Boll Soc Ital Biol Sper; 1980 Sep; 56(17):1715-20. PubMed ID: 7006638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The neural background of hyper-emotional aggression induced by post-weaning social isolation.
    Toth M; Tulogdi A; Biro L; Soros P; Mikics E; Haller J
    Behav Brain Res; 2012 Jul; 233(1):120-9. PubMed ID: 22548916
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Involvement of dopaminergic neurons in mouse-killing aggression in rats.
    Tadano T; Abe Y; Morikawa Y; Asao T; Hozumi M; Takahashi N; Tan-no K; Kisara K
    Methods Find Exp Clin Pharmacol; 1997 Oct; 19(8):527-31. PubMed ID: 9442475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of ACTH secretion by the central nucleus of the amygdala: implication of the serotoninergic system and its relevance to the glucocorticoid delayed negative feedback mechanism.
    Beaulieu S; Di Paolo T; Barden N
    Neuroendocrinology; 1986; 44(2):247-54. PubMed ID: 3025760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.