These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Role of vesicle recycling in vesicular storage and release of acetylcholine in Torpedo electroplaque synapses. Suszkiw JB; Whittaker VP Prog Brain Res; 1979; 49():153-62. PubMed ID: 515430 [No Abstract] [Full Text] [Related]
7. On the mechanism of acetylcholine release. Dunant Y Prog Neurobiol; 1986; 26(1):55-92. PubMed ID: 3008214 [No Abstract] [Full Text] [Related]
8. [Storage and release of acetylcholine (author's transl)]. Takeno K; Yanagiya I Tanpakushitsu Kakusan Koso; 1981 Aug; 26(11):1646-50. PubMed ID: 7029632 [No Abstract] [Full Text] [Related]
9. Giant reticulospinal synapse in lamprey: molecular links between active and periactive zones. Brodin L; Shupliakov O Cell Tissue Res; 2006 Nov; 326(2):301-10. PubMed ID: 16786368 [TBL] [Abstract][Full Text] [Related]
10. AP180 maintains the distribution of synaptic and vesicle proteins in the nerve terminal and indirectly regulates the efficacy of Ca2+-triggered exocytosis. Bao H; Daniels RW; MacLeod GT; Charlton MP; Atwood HL; Zhang B J Neurophysiol; 2005 Sep; 94(3):1888-903. PubMed ID: 15888532 [TBL] [Abstract][Full Text] [Related]
11. Synaptic vesicles recycling spontaneously and during activity belong to the same vesicle pool. Groemer TW; Klingauf J Nat Neurosci; 2007 Feb; 10(2):145-7. PubMed ID: 17220885 [TBL] [Abstract][Full Text] [Related]
12. Increase in the number of presynaptic large intramembrane particles during synaptic transmission at the Torpedo nerve-electroplaque junction. Garcia-Segura LM; Muller D; Dunant Y Neuroscience; 1986 Sep; 19(1):63-79. PubMed ID: 3024064 [TBL] [Abstract][Full Text] [Related]
13. Synaptic vesicle fusion and synaptotagmin: 2B or not 2B? O'Connor V; Lee AG Nat Neurosci; 2002 Sep; 5(9):823-4. PubMed ID: 12196805 [No Abstract] [Full Text] [Related]
14. Models of active transport of neurotransmitters in synaptic vesicles. Melkikh AV; Seleznev VD J Theor Biol; 2007 Sep; 248(2):350-3. PubMed ID: 17583751 [TBL] [Abstract][Full Text] [Related]
15. Functional reconstitution of KCl-evoked, Ca(2+)-dependent acetylcholine release system in Xenopus oocytes microinjected with presynaptic plasma membranes and synaptic vesicles. Canals JM; Ruiz-Avila L; Cantí C; Solsona C; Marsal J J Neurosci Res; 1996 Apr; 44(2):106-14. PubMed ID: 8723218 [TBL] [Abstract][Full Text] [Related]
16. Pharmacological characterization of the acetylcholine transport system in purified Torpedo electric organ synaptic vesicles. Anderson DC; King SC; Parsons SM Mol Pharmacol; 1983 Jul; 24(1):48-54. PubMed ID: 6865925 [TBL] [Abstract][Full Text] [Related]
17. Biophysical and biochemical studies of isolated cholinergic vesicles from Torpedo marmorata. Whittaker VP Fed Proc; 1982 Sep; 41(11):2759-64. PubMed ID: 7117551 [TBL] [Abstract][Full Text] [Related]
18. Reluctant vesicles coaxed into the limelight. Moulder KL; Mennerick S Neuron; 2005 May; 46(4):523-5. PubMed ID: 15944119 [TBL] [Abstract][Full Text] [Related]
19. Activity-dependent activation of presynaptic protein kinase C mediates post-tetanic potentiation. Brager DH; Cai X; Thompson SM Nat Neurosci; 2003 Jun; 6(6):551-2. PubMed ID: 12754518 [TBL] [Abstract][Full Text] [Related]
20. The structural organization of the readily releasable pool of synaptic vesicles. Rizzoli SO; Betz WJ Science; 2004 Mar; 303(5666):2037-9. PubMed ID: 15044806 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]