BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 6282090)

  • 1. The measurement of blood meal size in Aedes aegypti (L.).
    Ogunrinade A
    Afr J Med Med Sci; 1980; 9(1-2):69-71. PubMed ID: 6282090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antagonistic effects of energy status on meal size and egg-batch size of Aedes aegypti (Diptera: Culicidae).
    Mostowy WM; Foster WA
    J Vector Ecol; 2004 Jun; 29(1):84-93. PubMed ID: 15266745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of blood meal of field caught Aedes aegypti (L.) by multiplex PCR.
    Siriyasatien P; Pengsakul T; Kittichai V; Phumee A; Kaewsaitiam S; Thavara U; Tawatsin A; Asavadachanukorn P; Mulla MS
    Southeast Asian J Trop Med Public Health; 2010 Jan; 41(1):43-7. PubMed ID: 20578481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Host species diversity and post-blood feeding carbohydrate availability enhance survival of females and fecundity in Aedes albopictus (Diptera: Culicidae).
    Xue RD; Ali A; Barnard DR
    Exp Parasitol; 2008 Jun; 119(2):225-8. PubMed ID: 18343370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vector competence of Aedes aegypti (L.) and Culex quinquefasciatus (Say) for Dirofilaria immitis (Leidy).
    Tiawsirisup S; Nithiuthai S
    Southeast Asian J Trop Med Public Health; 2006; 37 Suppl 3():110-4. PubMed ID: 17547063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein synthesized by dengue infected Aedes aegypti and Aedes albopictus.
    Rohani A; Yunus W; Zamree I; Lee HL
    Trop Biomed; 2005 Dec; 22(2):233-42. PubMed ID: 16883293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of pre-existing energy stores of female Aedes aegypti mosquitoes during the first gonotrophic cycle.
    Zhou G; Pennington JE; Wells MA
    Insect Biochem Mol Biol; 2004 Sep; 34(9):919-25. PubMed ID: 15350611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast and slow blood-feeding durations of Aedes aegypti mosquitoes in Trinidad.
    Chadee DD; Beier JC; Mohammed RT
    J Vector Ecol; 2002 Dec; 27(2):172-7. PubMed ID: 12546453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic fate of [14C]-labeled meal protein amino acids in Aedes aegypti mosquitoes.
    Zhou G; Flowers M; Friedrich K; Horton J; Pennington J; Wells MA
    J Insect Physiol; 2004 Apr; 50(4):337-49. PubMed ID: 15081827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-dependent bloodfeeding of Aedes aegypti and Aedes albopictus on artificial and living hosts.
    Alto BW; Lounibos LP; Juliano SA
    J Am Mosq Control Assoc; 2003 Dec; 19(4):347-52. PubMed ID: 14710735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Oviposition and dispersion of Aedes aegypti in an urban environment].
    Reiter P
    Bull Soc Pathol Exot; 1996; 89(2):120-2. PubMed ID: 8924769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipophorin levels in the yellow fever mosquito, Aedes aegypti, and the effect of feeding.
    Van Heusden MC; Erickson BA; Pennington JE
    Arch Insect Biochem Physiol; 1997; 34(3):301-12. PubMed ID: 9055439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of sublethal concentrations of abate on biological parameters of Aedes aegypti].
    Reyes-Villanueva F; de la Garza-Garza H; Flores-Leal JA
    Salud Publica Mex; 1992; 34(4):406-12. PubMed ID: 1380186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of multiple blood feeding in Aedes aegypti (Diptera: Culicidae) during a single gonotrophic cycle using a histologic technique.
    Scott TW; Clark GG; Lorenz LH; Amerasinghe PH; Reiter P; Edman JD
    J Med Entomol; 1993 Jan; 30(1):94-9. PubMed ID: 8433350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The size of emerging and host-seeking Aedes aegypti and the relation of size to blood-feeding success in the field.
    Nasci RS
    J Am Mosq Control Assoc; 1986 Mar; 2(1):61-2. PubMed ID: 3507471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Body size-associated survival and dispersal rates of Aedes aegypti in Rio de Janeiro.
    Maciel-De-Freitas R; Codeço CT; Lourenço-De-Oliveira R
    Med Vet Entomol; 2007 Sep; 21(3):284-92. PubMed ID: 17897370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Susceptibility of geographically distinct Aedes aegypti L. from Florida to Dirofilaria immitis (Leidy) infection.
    Mahmood F
    J Vector Ecol; 2000 Jun; 25(1):36-47. PubMed ID: 10925796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insect blood meal studies using radiosodium 24Na and 22Na.
    Knaus RM; Foil LD; Issel CJ; Leprince DJ
    J Am Mosq Control Assoc; 1993 Sep; 9(3):264-8. PubMed ID: 8245935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of IGR treatment on oviposition of three species of vector mosquitos at sublethal concentrations.
    Vasuki V
    Southeast Asian J Trop Med Public Health; 1999 Mar; 30(1):200-3. PubMed ID: 10695811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmodium gallinaceum: ookinete formation and proteolytic enzyme dynamics in highly refractory Aedes aegypti populations.
    Kaplan RA; Zwiers SH; Yan G
    Exp Parasitol; 2001 Jul; 98(3):115-22. PubMed ID: 11527434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.