These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 6282252)

  • 1. Evidence for the extracellular reduction of ferricyanide by rat liver. A trans-plasma membrane redox system.
    Clark MG; Partick EJ; Patten GS; Crane FL; Löw H; Grebing C
    Biochem J; 1981 Dec; 200(3):565-72. PubMed ID: 6282252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties and regulation of a trans-plasma membrane redox system of perfused rat heart.
    Löw H; Crane FL; Partick EJ; Patten GS; Clark MG
    Biochim Biophys Acta; 1984 Jun; 804(2):253-60. PubMed ID: 6722187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of transmembrane delta muH+ generation in mitochondria by cytochrome c oxidase.
    Lorusso M; Capuano F; Boffoli D; Stefanelli R; Papa S
    Biochem J; 1979 Jul; 182(1):133-47. PubMed ID: 40546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties and regulation of a trans-plasma membrane redox system in rat liver.
    Clark MG; Partick EJ; Crane FL
    Biochem J; 1982 Jun; 204(3):795-801. PubMed ID: 7126168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. alpha-Adrenergic stimulation of trans-sarcolemma electron efflux in perfused rat heart. Possible regulation of Ca2+-channels by a sarcolemma redox system.
    Löw H; Crane FL; Partick EJ; Clark MG
    Biochim Biophys Acta; 1985 Feb; 844(2):142-8. PubMed ID: 2578826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A possible restriction of ferro- and ferricyanide oxidoreductase activities of rat liver mitochondria by the outer membrane.
    Gómez Ramírez LA; Lemeshko VV
    Arch Biochem Biophys; 2005 Nov; 443(1-2):11-20. PubMed ID: 16226709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary donor recovery kinetics in reaction centers from Rhodopseudomonas viridis. The influence of ferricyanide as a rapid oxidant of the acceptor quinones.
    Shopes RJ; Wraight CA
    Biochim Biophys Acta; 1986 Mar; 848(3):364-71. PubMed ID: 3947620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A highly sensitive colorimetric microplate ferrocyanide assay applied to ascorbate-stimulated transplasma membrane ferricyanide reduction and mitochondrial succinate oxidation.
    Lane DJ; Lawen A
    Anal Biochem; 2008 Feb; 373(2):287-95. PubMed ID: 17949676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 13C-NMR studies of transmembrane electron transfer to extracellular ferricyanide in human erythrocytes.
    Himmelreich U; Kuchel PW
    Eur J Biochem; 1997 Jun; 246(3):638-45. PubMed ID: 9219520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular flavonoids as electron donors for extracellular ferricyanide reduction in human erythrocytes.
    Fiorani M; De Sanctis R; De Bellis R; Dachà M
    Free Radic Biol Med; 2002 Jan; 32(1):64-72. PubMed ID: 11755318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of starvation and clofibrate administration on oxidative phosphorylation by rat liver mitochondria.
    Rasheed BK; Chhabra S; Kurup CK
    Biochem J; 1980 Jul; 190(1):191-8. PubMed ID: 6255942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of guanine triphosphate nucleotide binding to p21ras immunoprecipitates of rat liver plasma membranes by agents affecting redox state.
    Wilkinson FE; Paulik M; Morré DJ
    Biochem Biophys Res Commun; 1993 Jan; 190(1):229-35. PubMed ID: 8422247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmembrane redox in control of cell growth. Stimulation of HeLa cell growth by ferricyanide and insulin.
    Sun IL; Crane FL; Grebing C; Löw H
    Exp Cell Res; 1985 Feb; 156(2):528-36. PubMed ID: 3881265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmembrane ferricyanide reduction in carrot cells.
    Barr R; Craig TA; Crane FL
    Biochim Biophys Acta; 1985 Jan; 812(1):49-54. PubMed ID: 3967015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A kinetic analysis of the effects of adrenaline on calcium distribution in isolated rat liver parenchymal cells.
    Barritt GJ; Parker JC; Wadsworth JC
    J Physiol; 1981 Mar; 312():29-55. PubMed ID: 7264996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decrease of NADH in yeast cells by external ferricyanide reduction.
    Yamashoji S; Kajimoto G
    Biochim Biophys Acta; 1986 Nov; 852(1):25-9. PubMed ID: 3533148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of a transplasma membrane redox system of Phanerochaete chrysosporium.
    Stahl JD; Aust SD
    Arch Biochem Biophys; 1995 Jul; 320(2):369-74. PubMed ID: 7625845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of a transplasma membrane electron transport system in HeLa cells.
    Sun IL; Crane FL; Grebing C; Löw H
    J Bioenerg Biomembr; 1984 Dec; 16(5-6):583-95. PubMed ID: 6537437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chloroquine-sensitive transplasmalemma electron transport in Tetrahymena pyriformis: a hypothesis for control of parasite protozoa through transmembrane redox.
    Barr R; Branstetter BA; Rajnicek A; Crane FL; Löw H
    Biochim Biophys Acta; 1991 Jun; 1058(2):261-8. PubMed ID: 1904770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of dimesna to mesna by the isolated perfused rat liver.
    Goren MP; Hsu LC; Li JT
    Cancer Res; 1998 Oct; 58(19):4358-62. PubMed ID: 9766664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.