These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 6282411)
1. Structural factors influencing the ability of compounds to inhibit hydroxyapatite formation. Williams G; Sallis JD Calcif Tissue Int; 1982 Mar; 34(2):169-77. PubMed ID: 6282411 [TBL] [Abstract][Full Text] [Related]
2. Structure--activity relationship of inhibitors of hydroxyapatite formation. Williams G; Sallis JD Biochem J; 1979 Oct; 184(1):181-4. PubMed ID: 534518 [TBL] [Abstract][Full Text] [Related]
3. Inhibitors of crystal growth of hydroxyapatite: a constant composition approach. Wilson JW; Werness PG; Smith LH J Urol; 1985 Dec; 134(6):1255-8. PubMed ID: 2997488 [TBL] [Abstract][Full Text] [Related]
4. Effectiveness of phosphocitrate and N-sulpho-2-amino tricarballylate, a new analogue of phosphocitrate, in blocking hydroxyapatite induced crystal growth and calcium accumulation by matrix vesicles. Shankar R; Brown MR; Wong LK; Sallis JD Experientia; 1984 Mar; 40(3):265-7. PubMed ID: 6321227 [TBL] [Abstract][Full Text] [Related]
5. Glycochenodeoxycholic acid inhibits calcium phosphate precipitation in vitro by preventing the transformation of amorphous calcium phosphate to calcium hydroxyapatite. Qiu SM; Wen G; Hirakawa N; Soloway RD; Hong NK; Crowther RS J Clin Invest; 1991 Oct; 88(4):1265-71. PubMed ID: 1655828 [TBL] [Abstract][Full Text] [Related]
6. A new method for the study of the formation and transformation of calcium phosphate precipitates: effects of several chemical agents and Chinese folk medicines. Hidaka S; Abe K; Liu SY Arch Oral Biol; 1991; 36(1):49-54. PubMed ID: 1849399 [TBL] [Abstract][Full Text] [Related]
8. Effect of monofluorophosphate on calcium phosphate formation in supersaturated solutions. Vintiner GM; Pearce EI Caries Res; 1990; 24(2):101-6. PubMed ID: 2160326 [TBL] [Abstract][Full Text] [Related]
9. The effect of silicic acid on calcium phosphate precipitation. Damen JJ; ten Cate JM J Dent Res; 1989 Sep; 68(9):1355-9. PubMed ID: 2550533 [TBL] [Abstract][Full Text] [Related]
10. Intramitochondrial storage of stable amorphous calcium phosphate. Posner AS Ann N Y Acad Sci; 1978 Apr; 307():248-9. PubMed ID: 280270 [No Abstract] [Full Text] [Related]
11. [Thermal study of the formation of magnesium whitlockite from hydroxyapatite and magnesium phosphate]. Sakae T; Mishima H; Kozawa Y; Yamamoto H; Nagano E; Hirai G Nichidai Koko Kagaku; 1988 Dec; 14(4):463-8. PubMed ID: 2855366 [No Abstract] [Full Text] [Related]
12. Pyrophosphate, phosphate ion interaction: effects on calcium pyrophosphate and calcium hydroxyapatite crystal formation in aqueous solutions. Cheng PT; Pritzker KP J Rheumatol; 1983 Oct; 10(5):769-77. PubMed ID: 6315937 [TBL] [Abstract][Full Text] [Related]
13. Determination of calcium phosphate inhibitor activity. Critical assessment of the methodology. Meyer JL; Fleisch H Miner Electrolyte Metab; 1984; 10(4):249-58. PubMed ID: 6087103 [TBL] [Abstract][Full Text] [Related]
14. The effect of phosphatidylserine on in vitro hydroxyapatite growth and proliferation. Boskey AL; Dick BL Calcif Tissue Int; 1991 Sep; 49(3):193-6. PubMed ID: 1657326 [TBL] [Abstract][Full Text] [Related]
16. The effect of proteoglycans of cartilage and over-sulphated polysaccharides on the development of calcium-hydroxy-apatite (CHA) crystal formation in vitro. Németh-Csóka M; Sárközi A Acta Biol Acad Sci Hung; 1982; 33(4):407-17. PubMed ID: 6301180 [TBL] [Abstract][Full Text] [Related]
17. Magnesium substitution in the structure of orthopedic nanoparticles: A comparison between amorphous magnesium phosphates, calcium magnesium phosphates, and hydroxyapatites. Nabiyouni M; Ren Y; Bhaduri SB Mater Sci Eng C Mater Biol Appl; 2015; 52():11-7. PubMed ID: 25953534 [TBL] [Abstract][Full Text] [Related]
18. Interaction of bile salts with calcium hydroxyapatite: inhibitors of apatite formation exhibit high-affinity premicellar binding. Qiu SM; Soloway RD; Crowther RS Hepatology; 1992 Nov; 16(5):1280-9. PubMed ID: 1330869 [TBL] [Abstract][Full Text] [Related]
19. Structural requirement of monophosphates for inhibition of Na+-Pi cotransport in renal brush border membrane. Szczepanska-Konkel M; Yusufi AN; Lin JT; Dousa TP Biochem Pharmacol; 1989 Dec; 38(23):4191-7. PubMed ID: 2597189 [TBL] [Abstract][Full Text] [Related]
20. ESR spectra of VO2+ ions adsorbed on calcium phosphates. Oniki T; Doi Y Calcif Tissue Int; 1983 Jul; 35(4-5):538-41. PubMed ID: 6311378 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]