These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 6282808)

  • 1. Role of exonuclease III in the base excision repair of uracil-containing DNA.
    Taylor AF; Weiss B
    J Bacteriol; 1982 Jul; 151(1):351-7. PubMed ID: 6282808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple mutant of Escherichia coli synthesizing virtually thymineless DNA during limited growth.
    el-Hajj HH; Wang L; Weiss B
    J Bacteriol; 1992 Jul; 174(13):4450-6. PubMed ID: 1624437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lethality of a dut (deoxyuridine triphosphatase) mutation in Escherichia coli.
    el-Hajj HH; Zhang H; Weiss B
    J Bacteriol; 1988 Mar; 170(3):1069-75. PubMed ID: 2830228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of cDNA clones encoding a human apurinic/apyrimidinic endonuclease that corrects DNA repair and mutagenesis defects in E. coli xth (exonuclease III) mutants.
    Robson CN; Hickson ID
    Nucleic Acids Res; 1991 Oct; 19(20):5519-23. PubMed ID: 1719477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and metabolism of uracil-containing deoxyribonucleic acid in Escherichia coli.
    Warner HR; Duncan BK; Garrett C; Neuhard J
    J Bacteriol; 1981 Feb; 145(2):687-95. PubMed ID: 6109711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absence of pyrimidine insertase activity in E. coli extracts, using plasmid DNA containing apyrimidinic sites.
    Martin B; Sicard N
    Mutat Res; 1984; 132(3-4):87-93. PubMed ID: 6387474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosomal fragmentation in dUTPase-deficient mutants of Escherichia coli and its recombinational repair.
    Kouzminova EA; Kuzminov A
    Mol Microbiol; 2004 Mar; 51(5):1279-95. PubMed ID: 14982624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic lethality with the dut defect in Escherichia coli reveals layers of DNA damage of increasing complexity due to uracil incorporation.
    Ting H; Kouzminova EA; Kuzminov A
    J Bacteriol; 2008 Sep; 190(17):5841-54. PubMed ID: 18586941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative determination of uracil residues in Escherichia coli DNA: Contribution of ung, dug, and dut genes to uracil avoidance.
    Lari SU; Chen CY; Vertéssy BG; Morré J; Bennett SE
    DNA Repair (Amst); 2006 Dec; 5(12):1407-20. PubMed ID: 16908222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excision repair of thymine glycols, urea residues, and apurinic sites in Escherichia coli.
    Laspia MF; Wallace SS
    J Bacteriol; 1988 Aug; 170(8):3359-66. PubMed ID: 2457010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The properties of a bacteriophage T5 mutant unable to induce deoxyuridine 5'-triphosphate nucleotidohydrolase. Synthesis of uracil-containing T5 deoxyribonucleic acid.
    Warner HR; Thompson RB; Mozer TJ; Duncan BK
    J Biol Chem; 1979 Aug; 254(16):7534-9. PubMed ID: 381286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli K-12 mutants deficient in uracil-DNA glycosylase.
    Duncan BK; Rockstroh PA; Warner HR
    J Bacteriol; 1978 Jun; 134(3):1039-45. PubMed ID: 350837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of uracil-DNA glycosylase and apyrimidinic endonucleases in the molecular 5-bromo-2'-deoxyuridine photosensitization in Escherichia coli K-12.
    Yamamoto Y; Fujiwara Y
    Photochem Photobiol; 1993 Jul; 58(1):66-70. PubMed ID: 7690977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutation spectrum induced by singlet oxygen in Escherichia coli deficient in exonuclease III.
    Agnez-Lima LF; Di Mascio P; Napolitano RL; Fuchs RP; Menck CF
    Photochem Photobiol; 1999 Oct; 70(4):505-11. PubMed ID: 10546548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations in Escherichia coli altering an apurinic endonuclease, endonuclease II, and exonuclease III and their effect on in vivo sensitivity to methylmethanesulfonate.
    Kirtikar DM; Cathcart GR; White JG; Ukstins I; Goldthwait DA
    Biochemistry; 1977 Dec; 16(25):5625-31. PubMed ID: 200266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recombination of uracil-containing lambda bacteriophages.
    Hays JB; Duncan BK; Boehmer S
    J Bacteriol; 1981 Jan; 145(1):306-20. PubMed ID: 6450747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of nascent DNA fragments produced by excision of uracil residues in DNA.
    Machida Y; Okazaki T; Miyake T; Ohtsuka E; Ikehara M
    Nucleic Acids Res; 1981 Sep; 9(18):4755-66. PubMed ID: 6272214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of insertion, deletion, and nonsense mutations of the uracil-DNA glycosylase (ung) gene of Escherichia coli K-12.
    Duncan BK
    J Bacteriol; 1985 Nov; 164(2):689-95. PubMed ID: 2997126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fidelity of uracil-initiated base excision DNA repair in Escherichia coli cell extracts.
    Sung JS; Bennett SE; Mosbaugh DW
    J Biol Chem; 2001 Jan; 276(3):2276-85. PubMed ID: 11035036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activities involved in base excision repair of bacteriophage T4 and lambda DNA in vivo.
    Radany EH; Nguyen HT; Minton KW
    Mol Gen Genet; 1987 Aug; 209(1):83-9. PubMed ID: 2959841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.