BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 6282871)

  • 1. Effects of Copper and/or Cholesterol Overload on Mitochondrial Function in a Rat Model of Incipient Neurodegeneration.
    Arnal N; Castillo O; de Alaniz MJ; Marra CA
    Int J Alzheimers Dis; 2013; 2013():645379. PubMed ID: 24363953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rat Leydig cells use apolipoprotein E depleted high density lipoprotein to regulate testosterone production.
    Travert C; Fofana M; Carreau S; Le Goff D
    Mol Cell Biochem; 2000 Oct; 213(1-2):51-9. PubMed ID: 11129958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Centripetal cholesterol flux from extrahepatic organs to the liver is independent of the concentration of high density lipoprotein-cholesterol in plasma.
    Osono Y; Woollett LA; Marotti KR; Melchior GW; Dietschy JM
    Proc Natl Acad Sci U S A; 1996 Apr; 93(9):4114-9. PubMed ID: 8633025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unexpected inhibition of cholesterol 7 alpha-hydroxylase by cholesterol in New Zealand white and Watanabe heritable hyperlipidemic rabbits.
    Xu G; Salen G; Shefer S; Ness GC; Nguyen LB; Parker TS; Chen TS; Zhao Z; Donnelly TM; Tint GS
    J Clin Invest; 1995 Apr; 95(4):1497-504. PubMed ID: 7706454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholesterol synthesis and low density lipoprotein uptake are regulated independently in rat small intestinal epithelium.
    Stange EF; Dietschy JM
    Proc Natl Acad Sci U S A; 1983 Sep; 80(18):5739-43. PubMed ID: 6310589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rates of receptor-dependent and -independent low density lipoprotein uptake in the hamster.
    Spady DK; Bilheimer DW; Dietschy JM
    Proc Natl Acad Sci U S A; 1983 Jun; 80(11):3499-503. PubMed ID: 6304713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake of gold- and [3H]cholesteryl linoleate-labeled human low density lipoprotein by cultured rat granulosa cells: cellular mechanisms involved in lipoprotein metabolism and their importance to steroidogenesis.
    Paavola LG; Strauss JF; Boyd CO; Nestler JE
    J Cell Biol; 1985 Apr; 100(4):1235-47. PubMed ID: 3920223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake of low density lipoproteins by rat tissues. Special emphasis on the luteinized ovary.
    Reaven E; Chen YD; Spicher M; Hwang SF; Mondon CE; Azhar S
    J Clin Invest; 1986 Jun; 77(6):1971-84. PubMed ID: 3711341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic constants for receptor-dependent and receptor-independent low density lipoprotein transport in the tissues of the rat and hamster.
    Spady DK; Meddings JB; Dietschy JM
    J Clin Invest; 1986 May; 77(5):1474-81. PubMed ID: 3700649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sterol synthesis and low density lipoprotein clearance in vivo in the pregnant rat, placenta, and fetus. Sources for tissue cholesterol during fetal development.
    Belknap WM; Dietschy JM
    J Clin Invest; 1988 Dec; 82(6):2077-85. PubMed ID: 3198766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo interaction of synthetic acylated apopeptides with high density lipoproteins in rat.
    Ponsin G; Sparrow JT; Gotto AM; Pownall HJ
    J Clin Invest; 1986 Feb; 77(2):559-67. PubMed ID: 3080478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Receptor-independent low density lipoprotein transport in the rat in vivo. Quantitation, characterization, and metabolic consequences.
    Spady DK; Turley SD; Dietschy JM
    J Clin Invest; 1985 Sep; 76(3):1113-22. PubMed ID: 2995447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary saturated triacylglycerols suppress hepatic low density lipoprotein receptor activity in the hamster.
    Spady DK; Dietschy JM
    Proc Natl Acad Sci U S A; 1985 Jul; 82(13):4526-30. PubMed ID: 2989830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of potentially toxic bile acids with human plasma proteins: binding of lithocholic (3 alpha-hydroxy-5 beta-cholan-24-oic) acid to lipoproteins and albumin.
    Malavolti M; Fromm H; Ceryak S; Shehan KL
    Lipids; 1989 Jul; 24(7):673-6. PubMed ID: 2779375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of two high-density-lipoprotein-binding proteins from rat and human liver.
    Tozuka M; Fidge N
    Biochem J; 1989 Jul; 261(1):239-44. PubMed ID: 2549963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of an anti-low density lipoprotein receptor antibody to quantify the role of the LDL receptor in the removal of chylomicron remnants in the mouse in vivo.
    Choi SY; Fong LG; Kirven MJ; Cooper AD
    J Clin Invest; 1991 Oct; 88(4):1173-81. PubMed ID: 1918372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Affinity purification of the hepatic high-density lipoprotein receptor identifies two acidic glycoproteins and enables further characterization of their binding properties.
    Hidaka H; Fidge NH
    Biochem J; 1992 May; 284 ( Pt 1)(Pt 1):161-7. PubMed ID: 1318018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation of low and high density lipoprotein binding in vivo with rates of lipoprotein degradation in the rat. A comparison of lipoproteins of rat and human origin.
    Koelz HR; Sherrill BC; Turley SD; Dietschy JM
    J Biol Chem; 1982 Jul; 257(14):8061-72. PubMed ID: 6282871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding, degradation, and utilization of plasma high density and low density lipoproteins for progesterone production in cultured rat luteal cells.
    Rajendran KG; Hwang J; Menon KM
    Endocrinology; 1983 May; 112(5):1746-53. PubMed ID: 6299707
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.