BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 6282874)

  • 1. Respiration-defective Chinese hamster cell mutants containing low levels of NADH-ubiquinone reductase and cytochrome c oxidase.
    Malczewski RM; Whitfield CD
    J Biol Chem; 1982 Jul; 257(14):8137-42. PubMed ID: 6282874
    [No Abstract]   [Full Text] [Related]  

  • 2. A novel mutation selectively decreases complex I and cytochrome c oxidase subunits in Chinese hamster mitochondria.
    Malczewski RM; Whitfield CD
    J Biol Chem; 1984 Sep; 259(17):11103-13. PubMed ID: 6088529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis.
    Rouslin W
    Am J Physiol; 1983 Jun; 244(6):H743-8. PubMed ID: 6305212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative resolution of succinate-cytochrome c reductase into succinate-ubiquinone and ubiquinol-cytochrome c reductases.
    Yu L; Yu CA
    J Biol Chem; 1982 Feb; 257(4):2016-21. PubMed ID: 6276404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial deficiency of subunits in complex I or IV of patients with mitochondrial myopathies.
    Tanaka M; Nishikimi M; Suzuki H; Ozawa T; Koga Y; Nonaka I
    Biochem Int; 1987 Mar; 14(3):525-30. PubMed ID: 2884999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular remedy of complex I defects: rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria restores the NADH oxidase activity of complex I-deficient mammalian cells.
    Seo BB; Kitajima-Ihara T; Chan EK; Scheffler IE; Matsuno-Yagi A; Yagi T
    Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9167-71. PubMed ID: 9689052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of NADPH:cytochrome c reductase and DT-diaphorase in the biotransformation of mitomycin C1.
    Keyes SR; Fracasso PM; Heimbrook DC; Rockwell S; Sligar SG; Sartorelli AC
    Cancer Res; 1984 Dec; 44(12 Pt 1):5638-43. PubMed ID: 6437671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired mitochondrial beta-oxidation in a patient with an abnormality of the respiratory chain. Studies in skeletal muscle mitochondria.
    Watmough NJ; Bindoff LA; Birch-Machin MA; Jackson S; Bartlett K; Ragan CI; Poulton J; Gardiner RM; Sherratt HS; Turnbull DM
    J Clin Invest; 1990 Jan; 85(1):177-84. PubMed ID: 2153151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA-mediated transfer of complex I genes into three different respiration-deficient Chinese hamster mutant cell lines with defects in complex I of electron transport chain.
    Garnett KE; Simmons WA; Wing MS; Breen GA
    Somat Cell Mol Genet; 1985 Jul; 11(4):345-52. PubMed ID: 3927493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of iron deficiency on succinate- and NADH-ubiquinone oxidoreductases in skeletal muscle mitochondria.
    Ackrell BA; Maguire JJ; Dallman PR; Kearney EB
    J Biol Chem; 1984 Aug; 259(16):10053-9. PubMed ID: 6432778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Ubiquinone content and the oxidative-reductive enzymatic system activity in the liver of vitamin E-deficient rats administered alpha-tocopherol and its chlorine derivative].
    Donchenko GV; Kuz'menko IV; Kovalenko VN; Basalkevich ED; Koliadenko EV
    Vopr Med Khim; 1981; 27(5):707-10. PubMed ID: 6797129
    [No Abstract]   [Full Text] [Related]  

  • 12. [Abnormality in the mitochondrial energy-producing system].
    Ozawa T; Tanaka M
    Tanpakushitsu Kakusan Koso; 1988 Apr; 33(5):824-7. PubMed ID: 2855955
    [No Abstract]   [Full Text] [Related]  

  • 13. Direct interaction between yeast NADH-ubiquinone oxidoreductase, succinate-ubiquinone oxidoreductase, and ubiquinol-cytochrome c oxidoreductase in the reduction of exogenous quinones.
    Zhu QS; Beattie DS
    J Biol Chem; 1988 Jan; 263(1):193-9. PubMed ID: 2826438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Respiration-deficient Chinese hamster cell mutants: biochemical characterization.
    Breen GA; Scheffler IE
    Somatic Cell Genet; 1979 Jul; 5(4):441-51. PubMed ID: 494059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADH-CoQ reductase deficient myopathy: successful treatment with riboflavin.
    Arts WF; Scholte HR; Bogaard JM; Kerrebijn KF; Luyt-Houwen IE
    Lancet; 1983 Sep; 2(8349):581-2. PubMed ID: 6136740
    [No Abstract]   [Full Text] [Related]  

  • 16. Redox Bohr-effects in isolated cytochrome bc1 complex and cytochrome c oxidase from beef-heart mitochondria.
    Guerrieri F; Izzo G; Maida I; Papa S
    FEBS Lett; 1981 Mar; 125(2):261-5. PubMed ID: 6262133
    [No Abstract]   [Full Text] [Related]  

  • 17. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1990 Aug; 1019(2):151-8. PubMed ID: 2119805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial myopathies: deficiencies localized to complex I and complex III of the mitochondrial respiratory chain.
    Morgan-Hughes JA; Hayes DJ; Cooper M; Clark JB
    Biochem Soc Trans; 1985 Aug; 13(4):648-50. PubMed ID: 2993076
    [No Abstract]   [Full Text] [Related]  

  • 19. 31P NMR examination of two patients with NADH-CoQ reductase deficiency.
    Radda GK; Bore PJ; Gadian DG; Ross BD; Styles P; Taylor DJ; Morgan-Hughes J
    Nature; 1982 Feb; 295(5850):608-9. PubMed ID: 6799841
    [No Abstract]   [Full Text] [Related]  

  • 20. Selective inhibition of mitochondrial NADH-ubiquinone reductase (Complex I) by an alkyl polyoxyethylene ether.
    Suzuki H; Wakai M; Ozawa T
    Biochem Int; 1986 Aug; 13(2):351-7. PubMed ID: 3094534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.