BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 6282971)

  • 1. A role for oxygen-dependent mechanisms in killing of Leishmania donovani tissue forms by activated macrophages.
    Haidaris CG; Bonventre PF
    J Immunol; 1982 Aug; 129(2):850-5. PubMed ID: 6282971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-mediated immune response in experimental visceral leishmaniasis. II. Oxygen-dependent killing of intracellular Leishmania donovani amastigotes.
    Murray HW
    J Immunol; 1982 Jul; 129(1):351-7. PubMed ID: 6282967
    [No Abstract]   [Full Text] [Related]  

  • 3. A study of the differential respiratory burst activity elicited by promastigotes and amastigotes of Leishmania donovani in murine resident peritoneal macrophages.
    Channon JY; Roberts MB; Blackwell JM
    Immunology; 1984 Oct; 53(2):345-55. PubMed ID: 6490087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential survival of Leishmania donovani amastigotes in human monocytes.
    Pearson RD; Harcus JL; Roberts D; Donowitz GR
    J Immunol; 1983 Oct; 131(4):1994-9. PubMed ID: 6619546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The respiratory burst is not required for killing of intracellular and extracellular parasites by a lymphokine-activated macrophage cell line.
    Scott P; James S; Sher A
    Eur J Immunol; 1985 Jun; 15(6):553-8. PubMed ID: 2988973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human mononuclear phagocyte antiprotozoal mechanisms: oxygen-dependent vs oxygen-independent activity against intracellular Toxoplasma gondii.
    Murray HW; Rubin BY; Carriero SM; Harris AM; Jaffee EA
    J Immunol; 1985 Mar; 134(3):1982-8. PubMed ID: 2981929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular destruction of Leishmania donovani and Leishmania tropica amastigotes by activated macrophages: dissociation of these microbicidal effector activities in vitro.
    Hockmeyer WT; Walters D; Gore RW; Williams JS; Fortier AH; Nacy CA
    J Immunol; 1984 Jun; 132(6):3120-5. PubMed ID: 6725948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interferon decreases production of hydrogen peroxide by macrophages: correlation with reduction of suppressive capacity and of anti-microbial activity.
    Boraschi D; Ghezzi P; Pasqualetto E; Salmona M; Nencioni L; Soldateschi D; Villa L; Tagliabue A
    Immunology; 1983 Nov; 50(3):359-68. PubMed ID: 6354920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phagocytosis and killing of the protozoan Leishmania donovani by human polymorphonuclear leukocytes.
    Pearson RD; Steigbigel RT
    J Immunol; 1981 Oct; 127(4):1438-43. PubMed ID: 7276565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of macrophage antimicrobial activity by a tumor cell product.
    Szuro-Sudol A; Murray HW; Nathan CF
    J Immunol; 1983 Jul; 131(1):384-7. PubMed ID: 6408180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between enhanced oxidative metabolism and leishmanicidal activity in activated macrophages from healer and nonhealer mouse strains.
    Buchmüller-Rouiller Y; Mauël J
    J Immunol; 1986 May; 136(10):3884-90. PubMed ID: 3009612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced macrophage anti-microbial activity following dimethylnitrosamine exposure in vivo is related to augmented production of reactive oxygen metabolites.
    Edwards CK; Myers MJ; Kelley KW; Schook LB
    Immunopharmacol Immunotoxicol; 1991; 13(3):395-411. PubMed ID: 1940055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalase inhibits nitric oxide synthesis and the killing of intracellular Leishmania major in murine macrophages.
    Li Y; Severn A; Rogers MV; Palmer RM; Moncada S; Liew FY
    Eur J Immunol; 1992 Feb; 22(2):441-6. PubMed ID: 1537380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional heterogeneity of macrophage precursor cells from spleen of Leishmania donovani-infected and untreated mice.
    Hockertz S; Baccarini M; Lohmann-Matthes ML
    J Immunol; 1989 Apr; 142(7):2489-94. PubMed ID: 2926141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Failure of Trypanosoma cruzi to trigger the respiratory burst of activated macrophages. Mechanism for immune evasion and importance of oxygen-independent killing.
    McCabe RE; Mullins BT
    J Immunol; 1990 Mar; 144(6):2384-8. PubMed ID: 2155965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative killing of the intraerythrocytic malaria parasite Plasmodium yoelii by activated macrophages.
    Ockenhouse CF; Shear HL
    J Immunol; 1984 Jan; 132(1):424-31. PubMed ID: 6690606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IFN-beta-induced reduction of superoxide anion generation by macrophages.
    Boraschi D; Ghezzi P; Salmona M; Tagliabue A
    Immunology; 1982 Apr; 45(4):621-8. PubMed ID: 6175565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of crisis forms in the human malaria parasite Plasmodium falciparum by gamma-interferon-activated, monocyte-derived macrophages.
    Ockenhouse CF; Schulman S; Shear HL
    J Immunol; 1984 Sep; 133(3):1601-8. PubMed ID: 6431003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of mouse peritoneal macrophages in vitro and in vivo by interferon-gamma.
    Murray HW; Spitalny GL; Nathan CF
    J Immunol; 1985 Mar; 134(3):1619-22. PubMed ID: 3918107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Susceptibility of Leishmania to oxygen intermediates and killing by normal macrophages.
    Murray HW
    J Exp Med; 1981 May; 153(5):1302-15. PubMed ID: 7252418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.