These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 6283072)

  • 1. The interaction between aminoquinolines and presynaptically acting neurotoxins.
    Simpson LL
    J Pharmacol Exp Ther; 1982 Jul; 222(1):43-8. PubMed ID: 6283072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lectins from Triticum vulgaris and Limax flavus are universal antagonists of botulinum neurotoxin and tetanus toxin.
    Bakry N; Kamata Y; Simpson LL
    J Pharmacol Exp Ther; 1991 Sep; 258(3):830-6. PubMed ID: 1653841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ammonium chloride and methylamine hydrochloride antagonize clostridial neurotoxins.
    Simpson LL
    J Pharmacol Exp Ther; 1983 Jun; 225(3):546-52. PubMed ID: 6864519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The binding fragment from tetanus toxin antagonizes the neuromuscular blocking actions of botulinum toxin.
    Simpson LL
    J Pharmacol Exp Ther; 1984 Apr; 229(1):182-7. PubMed ID: 6707933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of pharmacologic antagonists to deduce commonalities of biologic activity among clostridial neurotoxins.
    Simpson LL
    J Pharmacol Exp Ther; 1988 Jun; 245(3):867-72. PubMed ID: 2455038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chelation of zinc antagonizes the neuromuscular blocking properties of the seven serotypes of botulinum neurotoxin as well as tetanus toxin.
    Simpson LL; Coffield JA; Bakry N
    J Pharmacol Exp Ther; 1993 Nov; 267(2):720-7. PubMed ID: 8246147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Botulinum neurotoxin type E: studies on mechanism of action and on structure-activity relationships.
    Simpson LL; Dasgupta BR
    J Pharmacol Exp Ther; 1983 Jan; 224(1):135-40. PubMed ID: 6294275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins.
    Simpson LL; Coffield JA; Bakry N
    J Pharmacol Exp Ther; 1994 Apr; 269(1):256-62. PubMed ID: 8169833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fragment C of tetanus toxin antagonizes the neuromuscular blocking properties of native tetanus toxin.
    Simpson LL
    J Pharmacol Exp Ther; 1984 Mar; 228(3):600-4. PubMed ID: 6707911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Botulinum neurotoxin].
    Poulain B
    Rev Neurol (Paris); 2010 Jan; 166(1):7-20. PubMed ID: 19846187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Molecular mechanism of action of tetanus toxin and botulinum neurotoxins].
    Poulain B
    Pathol Biol (Paris); 1994 Feb; 42(2):173-82. PubMed ID: 7916455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of the pharmacological properties of Clostridium botulinum type C1 and C2 toxins.
    Simpson LL
    J Pharmacol Exp Ther; 1982 Dec; 223(3):695-701. PubMed ID: 6292397
    [No Abstract]   [Full Text] [Related]  

  • 13. Kinetic studies on the interaction between botulinum toxin type A and the cholinergic neuromuscular junction.
    Simpson LL
    J Pharmacol Exp Ther; 1980 Jan; 212(1):16-21. PubMed ID: 6243359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two novel alpha-neurotoxins isolated from the taipan snake, Oxyuranus scutellatus, exhibit reduced affinity for nicotinic acetylcholine receptors in brain and skeletal muscle.
    Zamudio F; Wolf KM; Martin BM; Possani LD; Chiappinelli VA
    Biochemistry; 1996 Jun; 35(24):7910-6. PubMed ID: 8672493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro characterization of botulinum toxin types A, C and D action on human tissues: combined electrophysiologic, pharmacologic and molecular biologic approaches.
    Coffield JA; Bakry N; Zhang RD; Carlson J; Gomella LG; Simpson LL
    J Pharmacol Exp Ther; 1997 Mar; 280(3):1489-98. PubMed ID: 9067339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Botulinum neurotoxin and dendrotoxin as probes for studies on transmitter release.
    Dolly JO; Halliwell JV; Black JD; Williams RS; Pelchen-Matthews A; Breeze AL; Mehraban F; Othman IB; Black AR
    J Physiol (Paris); 1984; 79(4):280-303. PubMed ID: 6152294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural features of aminoquinolines necessary for antagonist activity against botulinum neurotoxin.
    Sheridan RE; Deshpande SS; Nicholson JD; Adler M
    Toxicon; 1997 Sep; 35(9):1439-51. PubMed ID: 9403967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative determination of biological activity of botulinum toxins utilizing compound muscle action potentials (CMAP), and comparison of neuromuscular transmission blockage and muscle flaccidity among toxins.
    Torii Y; Goto Y; Takahashi M; Ishida S; Harakawa T; Sakamoto T; Kaji R; Kozaki S; Ginnaga A
    Toxicon; 2010; 55(2-3):407-14. PubMed ID: 19778548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Botulinum neurotoxins: mechanism of action.
    Tighe AP; Schiavo G
    Toxicon; 2013 Jun; 67():87-93. PubMed ID: 23201505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of alpha- and beta-neurotoxins from the venoms of various snakes on transmission in autonomic ganglia.
    Chiappinelli VA; Cohen JB; Zigmond RE
    Brain Res; 1981 Apr; 211(1):107-26. PubMed ID: 6261879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.