BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 6283547)

  • 1. Protease-catalyzed peptide bond formation: application to synthesis of the COOH-terminal octapeptide of cholecystokinin.
    Kullmann W
    Proc Natl Acad Sci U S A; 1982 May; 79(9):2840-4. PubMed ID: 6283547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protease-catalyzed synthesis of the tripeptide CCK(26-28), a fragment of CCK-8.
    Meng LP; Joshi R; Eckstein H
    Amino Acids; 2007 Jul; 33(1):91-6. PubMed ID: 17058117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholecystokinin (pancreozymin). Synthesis and properties of the N alpha-acetyl-derivative of cholecystokinin 27-33.
    Bodanszky M; Tolle JC; Gardner JD; Walker MD; Mutt V
    Int J Pept Protein Res; 1980 Nov; 16(5):402-11. PubMed ID: 6163740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of CCK-8 tetrapeptide fragment by enzymatic method.
    Xiang G; Eckstein H
    J Huazhong Univ Sci Technolog Med Sci; 2003; 23(3):234-5, 241. PubMed ID: 14526420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic synthesis of a CCK-4 tripeptide fragment.
    Guo L; Lu ZM; Eckstein H
    Di Yi Jun Yi Da Xue Xue Bao; 2003 Apr; 23(4):289-92. PubMed ID: 12697455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Studies on the total synthesis of cholecystokinin-pancreozymin. Synthesis of the suitably protected fragment corresponding to the sequence 24--33 (author's transl)].
    Wünsch E; Moroder L; Wilschowitz L; Göhring W; Scharf R; Gardner JD
    Hoppe Seylers Z Physiol Chem; 1981 Feb; 362(2):143-52. PubMed ID: 7216168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-terminal fragments of CCK-(26-33) as cholecystokinin receptor antagonists in guinea pig pancreatic acini.
    Gardner JD; Knight M; Sutliff VE; Jensen RT
    Am J Physiol; 1985 Jan; 248(1 Pt 1):G98-102. PubMed ID: 2578257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide synthesis using immobilized proteases.
    Jakubke HD; Könnecke A
    Methods Enzymol; 1987; 136():178-88. PubMed ID: 3316928
    [No Abstract]   [Full Text] [Related]  

  • 9. Preparation of tyrosine-O-[35S]sulfated cholecystokinin octapeptide from a nonsulfated precursor peptide.
    Nakahara T; Waki M; Uchimura H; Hirano M; Kim JS; Matsumoto T; Nakamura K; Ishibashi K; Hirano H; Shiraishi A
    Anal Biochem; 1986 Apr; 154(1):194-9. PubMed ID: 3706722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Cholecystokinin-pancreozymin synthesis. Synthesis of [28-threonine,31-norleucine]- and [28-threonine,31-leucine]cholecystokinin-pancreozymin-(25-33)-nonapeptide].
    Moroder L; Wilschowitz L; Gemeiner M; Göhring W; Knof S; Scharf R; Thamm P; Gardner JD; Solomon TE; Wünsch E
    Hoppe Seylers Z Physiol Chem; 1981 Jul; 362(7):929-42. PubMed ID: 7275014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Total enzymatic synthesis of cholecystokinin CCK-5.
    Xiang H; Xiang GY; Lu ZM; Guo L; Eckstein H
    Amino Acids; 2004 Aug; 27(1):101-5. PubMed ID: 15309578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A methodological study of the enzymatic synthesis of the tripeptide Z-Cys(Bzl)-Tyr-Ile-OtBu.
    Irokawa A; Tominaga M
    Pept Res; 1991; 4(6):340-6. PubMed ID: 1821169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semisynthesis of carboxy-terminal fragments of thermolysin.
    De Filippis V; Fontana A
    Int J Pept Protein Res; 1990 Mar; 35(3):219-27. PubMed ID: 2113042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated process for the enzymatic synthesis of the octapeptide PhAcCCK-8.
    Fité M; Clapés P; López-Santín J; Benaiges MD; Caminal G
    Biotechnol Prog; 2002; 18(6):1214-20. PubMed ID: 12467454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholecystokinin octa- and tetrapeptide degradation by synaptic membranes. II. Solubilization and separation of membrane-bound CCK-8 cleaving enzymes.
    Deschodt-Lanckman M; Bui ND; Koulischer D; Paroutaud P; Strosberg AD
    Peptides; 1983; 4(1):71-8. PubMed ID: 6306618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and biological characterisation of [3H]BBL454, a new CCK2 selective radiolabelled agonist displaying original pharmacological properties.
    Bellier B; Dugave C; Etivant F; Genet R; Gigoux V; Garbay C
    Bioorg Med Chem Lett; 2004 Jan; 14(2):369-72. PubMed ID: 14698161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double bond isosteres of the peptide bond: synthesis and biological activity of cholecystokinin (CCK) C-terminal hexapeptide analogs.
    Shue YK; Tufano MD; Carrera GM; Kopecka H; Kuyper SL; Holladay MW; Lin CW; Witte DG; Miller TR; Stashko M
    Bioorg Med Chem; 1993 Sep; 1(3):161-71. PubMed ID: 8081848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potentiation effect of cholecystokinin-octapeptide on pancreatic bicarbonate secretion stimulated by a physiologic dose of secretin in humans.
    You CH; Rominger JM; Chey WY
    Gastroenterology; 1983 Jul; 85(1):40-5. PubMed ID: 6303892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of water on protease-catalyzed peptide synthesis in acetonitrile/water mixtures.
    Reslow M; Adlercreutz P; Mattiasson B
    Eur J Biochem; 1988 Nov; 177(2):313-8. PubMed ID: 3056721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of the C-terminal octapeptide of cholecystokinin with a high-specific-activity iodinated imidoester: preparation, characterization, and binding to isolated pancreatic acinar cells.
    Praissman M; Izzo RS; Berkowitz JM
    Anal Biochem; 1982 Mar; 121(1):190-8. PubMed ID: 6283943
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.