These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 6283813)

  • 1. Factors affecting the intracellular generation of free radicals from quinones.
    Powis G; Svingen BA; Appel P
    Adv Exp Med Biol; 1981; 136 Pt A():349-58. PubMed ID: 6283813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NADPH cytochrome P-450 reductase activation of quinone anticancer agents to free radicals.
    Bachur NR; Gordon SL; Gee MV; Kon H
    Proc Natl Acad Sci U S A; 1979 Feb; 76(2):954-7. PubMed ID: 34156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar.
    Winston GW; Church DF; Cueto R; Pryor WA
    Arch Biochem Biophys; 1993 Aug; 304(2):371-8. PubMed ID: 8394056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship of the single-electron reduction potential of quinones to their reduction by flavoproteins.
    Powis G; Appel PL
    Biochem Pharmacol; 1980 Oct; 29(19):2567-72. PubMed ID: 6775639
    [No Abstract]   [Full Text] [Related]  

  • 5. Quinone-stimulated superoxide formation by subcellular fractions, isolated hepatocytes, and other cells.
    Powis G; Svingen BA; Appel P
    Mol Pharmacol; 1981 Sep; 20(2):387-94. PubMed ID: 6272094
    [No Abstract]   [Full Text] [Related]  

  • 6. The enzymology of doxorubicin quinone reduction in tumour tissue.
    Cummings J; Allan L; Willmott N; Riley R; Workman P; Smyth JF
    Biochem Pharmacol; 1992 Dec; 44(11):2175-83. PubMed ID: 1472082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of some acceptors with superoxide anion radicals formed by the NADPH-specific flavoprotein in rat liver microsomal fractions.
    Mishin V; Pokrovsky A; Lyakhovich VV
    Biochem J; 1976 Feb; 154(2):307-10. PubMed ID: 7236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporary decrease in renal quinone reductase activity induced by chronic administration of estradiol to male Syrian hamsters. Increased superoxide formation by redox cycling of estrogen.
    Roy D; Liehr JG
    J Biol Chem; 1988 Mar; 263(8):3646-51. PubMed ID: 2831197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One- and two-electron reduction of 2-methyl-1,4-naphthoquinone bioreductive alkylating agents: kinetic studies, free-radical production, thiol oxidation and DNA-strand-break formation.
    Giulivi C; Cadenas E
    Biochem J; 1994 Jul; 301 ( Pt 1)(Pt 1):21-30. PubMed ID: 8037673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Interrelationship between the generation of oxygen anion-radicals and the reduction of artificial acceptors and cytochrome P-450 by NADPH-cytochrome c reductase].
    Liakhovich VV; Mishin VM; Pokrovskii AG
    Biokhimiia; 1977 Jul; 42(7):1323-30. PubMed ID: 198028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of reactive oxygen species due to metabolic activation of butylated hydroxyanisole.
    Kahl R; Weinke S; Kappus H
    Toxicology; 1989 Dec; 59(2):179-94. PubMed ID: 2555935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of flavin addition and removal on the formation of superoxide by NADPH-Cytochrome P-450 reductase: a spin-trap study.
    Grover TA; Piette LH
    Arch Biochem Biophys; 1981 Nov; 212(1):105-14. PubMed ID: 6272650
    [No Abstract]   [Full Text] [Related]  

  • 13. Superoxide, neuroleptics and the ubiquinone and cytochrome b5 reductases in brain and lymphocytes from normals and schizophrenic patients.
    Whatley SA; Curti D; Das Gupta F; Ferrier IN; Jones S; Taylor C; Marchbanks RM
    Mol Psychiatry; 1998 May; 3(3):227-37. PubMed ID: 9672898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrazine radical formation catalyzed by rat microsomal NADPH-cytochrome P-450 reductase.
    Noda A; Noda H; Misaka A; Sumimoto H; Tatsumi K
    Biochem Biophys Res Commun; 1988 May; 153(1):256-60. PubMed ID: 2837203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Participation of superoxide, hydrogen peroxide and hydroxyl radicals in NADPH-cytochrome P-450 reductase-catalyzed peroxidation of methyl linolenate.
    Kameda K; Ono T; Imai Y
    Biochim Biophys Acta; 1979 Jan; 572(1):77-82. PubMed ID: 32915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of hepatic microsomal and purified cytochrome P-450 in one-electron reduction of two quinone imines and concomitant reduction of molecular oxygen.
    van de Straat R; de Vries J; Vermeulen NP
    Biochem Pharmacol; 1987 Mar; 36(5):613-9. PubMed ID: 3030331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenobarbital-induced cytosolic cytoprotective mechanisms that offset increases in NADPH cytochrome P450 reductase activity in menadione-mediated cytotoxicity.
    Utley WS; Mehendale HM
    Toxicol Appl Pharmacol; 1989 Jun; 99(2):323-33. PubMed ID: 2544042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Release of iron from ferritin storage by redox cycling of stilbene and steroid estrogen metabolites: a mechanism of induction of free radical damage by estrogen.
    Wyllie S; Liehr JG
    Arch Biochem Biophys; 1997 Oct; 346(2):180-6. PubMed ID: 9343364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification of a terminal oxygenase in demethylation of C-30 of lanosterol.
    Maitra US; Mohan VP; Kochi H; Shankar V; Adlersberg M; Liu KP; Ponticorvo L; Sprinson DB
    Biochem Biophys Res Commun; 1982 Sep; 108(2):517-25. PubMed ID: 6816234
    [No Abstract]   [Full Text] [Related]  

  • 20. Relationship between the reduction of oxygen, artificial acceptors and cytochrome P-450 by NADPH--cytochrome c reductase.
    Lyakhovich V; Mishin V; Pokrovsky A
    Biochem J; 1977 Nov; 168(2):133-9. PubMed ID: 202259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.