BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 6284041)

  • 1. Effect of CuSO4 and Cu(II)(Gly)2 on some indirect assays for superoxide dismutase activity.
    Russanov EM; Ljutakova SG; Leutchev SI
    Arch Biochem Biophys; 1982 Apr; 215(1):222-9. PubMed ID: 6284041
    [No Abstract]   [Full Text] [Related]  

  • 2. Superoxide dismutase-like activities of copper(II) complexes tested in serum.
    Huber KR; Sridhar R; Griffith EH; Amma EL; Roberts J
    Biochim Biophys Acta; 1987 Sep; 915(2):267-76. PubMed ID: 2820500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper complexes of 1,10-phenanthroline and related compounds as superoxide dismutase mimetics.
    Bijloo GJ; van der Goot H; Bast A; Timmerman H
    J Inorg Biochem; 1990 Nov; 40(3):237-44. PubMed ID: 1963439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in vivo, ex vivo and in vitro comparative study of activity of copper oligopeptide complexes vs Cu(II) ions.
    Ciuffi M; Cellai C; Franchi-Micheli S; Zilletti L; Ginanneschi M; Chelli M; Papini AM; Paoletti F
    Pharmacol Res; 1998 Oct; 38(4):279-87. PubMed ID: 9774491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW; Feierman DE; Cederbaum AI
    Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactivity of antiinflammatory and superoxide dismutase active Cu(II)-salicylates.
    Weser U; Richter C; Wendel A; Younes M
    Bioinorg Chem; 1978; 8(3):201-13. PubMed ID: 206291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the superoxide dismutase-like activity of cimetidine-Cu(II) complexes.
    Goldstein S; Czapski G
    Free Radic Res Commun; 1991; 12-13 Pt 1():205-10. PubMed ID: 1649090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of nitroblue tetrazolium reduction by cuprein (superoxide dismutase), Cu(tyr)2 and Cu(lys)2.
    Younes M; Weser U
    FEBS Lett; 1976 Jan; 61(2):209-12. PubMed ID: 1248624
    [No Abstract]   [Full Text] [Related]  

  • 9. Inhibition of nitroblue tetrazolium reduction by metallothionein.
    Shiraishi M; Utsumi K; Morimoto S; Joja I; Iida S; Takeda Y; Aono K
    Physiol Chem Phys; 1982; 14(6):533-7. PubMed ID: 6897906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of detergents on indirect assays for superoxide dismutase activity.
    Ljutakova SG
    Methods Find Exp Clin Pharmacol; 1984 Mar; 6(3):125-9. PubMed ID: 6087045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the mechanism of production of superoxide radical by reaction mixtures containing NADH, phenazine methosulfate, and nitroblue tetrazolium.
    Picker SD; Fridovich I
    Arch Biochem Biophys; 1984 Jan; 228(1):155-8. PubMed ID: 6320732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do the copper complexes of histamine, histidine and of two H2-antagonists react with O2-?
    Konstantinova SG; Russanova IE; Russanov EM
    Free Radic Res Commun; 1991; 12-13 Pt 1():215-20. PubMed ID: 1676975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The hemolytic effect of copper complexes with different ligands.
    Dimitrova D; Radonova N; Ivancheva E; Russanov E
    Acta Physiol Pharmacol Bulg; 1987; 13(2):48-53. PubMed ID: 3673601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of feed supplementation with a copper-glycine chelate and copper sulphate on selected humoral and cell-mediated immune parameters, plasma superoxide dismutase activity, ceruloplasmin and cytokine concentration in broiler chickens.
    Jarosz ŁS; Marek A; Grądzki Z; Kwiecień M; Kaczmarek B
    J Anim Physiol Anim Nutr (Berl); 2018 Feb; 102(1):e326-e336. PubMed ID: 28603872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a new copper(II)-curcumin complex as superoxide dismutase mimic and its free radical reactions.
    Barik A; Mishra B; Shen L; Mohan H; Kadam RM; Dutta S; Zhang HY; Priyadarsini KI
    Free Radic Biol Med; 2005 Sep; 39(6):811-22. PubMed ID: 16109310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of oxygen radicals by photosensitization.
    Martin JP; Burch P
    Methods Enzymol; 1990; 186():635-45. PubMed ID: 2172720
    [No Abstract]   [Full Text] [Related]  

  • 17. Superoxide dismutase activity and electrochemical study of the binuclear [Cu(TSA)2py]2 complex.
    Parajón Costa BS; Tótaro RM; Ferrer EG; Williams PA
    J Trace Elem Med Biol; 2002; 16(3):183-6. PubMed ID: 12437156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the superoxide and hydroxyl radicals in the degradation of DNA and deoxyribose induced by a copper-phenanthroline complex.
    Gutteridge JM; Halliwell B
    Biochem Pharmacol; 1982 Sep; 31(17):2801-5. PubMed ID: 6291545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates: is it a mechanism for hydroxyl radical production in biochemical systems?
    Halliwell B
    FEBS Lett; 1978 Aug; 92(2):321-6. PubMed ID: 212302
    [No Abstract]   [Full Text] [Related]  

  • 20. Conjugation of dopa and 5-S-cysteinyldopa with cysteine mediated by superoxide radical.
    Ito S; Fujita K
    Biochem Pharmacol; 1982 Sep; 31(18):2887-9. PubMed ID: 6291549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.