These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. The effect of pH on cellular and membrane calcium binding and contraction of myocardium. A possible role for sarcolemmal phospholipid in EC coupling. Langer GA Circ Res; 1985 Sep; 57(3):374-82. PubMed ID: 4028343 [TBL] [Abstract][Full Text] [Related]
43. Sodium requirement for the positive inotropic action of isoproterenol on guinea pig atria. Linden J; Brooker G Science; 1978 Feb; 199(4328):539-41. PubMed ID: 203031 [TBL] [Abstract][Full Text] [Related]
44. SR Ca loading in cardiac muscle preparations based on rapid-cooling contractures. Bers DM Am J Physiol; 1989 Jan; 256(1 Pt 1):C109-20. PubMed ID: 2536224 [TBL] [Abstract][Full Text] [Related]
45. Competition and redistribution among calcium transport systems in rabbit cardiac myocytes. Bers DM; Bassani JW; Bassani RA Cardiovasc Res; 1993 Oct; 27(10):1772-7. PubMed ID: 8275522 [TBL] [Abstract][Full Text] [Related]
46. [Calcium-transporting systems and calcium regulation in cardiomyocytes]. Aleksandrova EA Usp Fiziol Nauk; 2001; 32(3):40-8. PubMed ID: 11565424 [TBL] [Abstract][Full Text] [Related]
47. Current interpretation of myocardial stunning. Guaricci AI; Bulzis G; Pontone G; Scicchitano P; Carbonara R; Rabbat M; De Santis D; Ciccone MM Trends Cardiovasc Med; 2018 May; 28(4):263-271. PubMed ID: 29221768 [TBL] [Abstract][Full Text] [Related]
48. Protein kinase-catalyzed membrane phosphorylation and its possible relationship to the role of calcium in the adrenergic regulation of cardiac contraction. Wollenberger A; Will H Life Sci; 1978 Apr 3-17; 22(13-15):1159-78. PubMed ID: 207939 [No Abstract] [Full Text] [Related]
49. Regulation of calcium transport by the ATPase-phospholamban system. Tada M; Inui M J Mol Cell Cardiol; 1983 Sep; 15(9):565-75. PubMed ID: 6313949 [No Abstract] [Full Text] [Related]
51. [Mitochondrial participation in regulating the transmembrane Ca2+ current within myocardial cells]. Alabovskiĭ VV; Kobrin VI Usp Fiziol Nauk; 1985; 16(1):3-20. PubMed ID: 2579514 [No Abstract] [Full Text] [Related]
52. An effect of the cardiotoxic protein volvatoxin A on the function and structure of heart muscle cells. Fassold E; Slade AM; Lin JY; Nayler WG J Mol Cell Cardiol; 1976 Jul; 8(7):501-19. PubMed ID: 957449 [No Abstract] [Full Text] [Related]
53. Calcium compartmentation in mammalian myocardium. Langer GA Adv Exp Med Biol; 1986; 194():527-33. PubMed ID: 3529871 [No Abstract] [Full Text] [Related]
56. Regulation of calcium transport by cyclic AMP. A proposed mechanism for the beta-adrenergic control of myocardial contractility. Tada M; Kirchberger MA Acta Cardiol; 1975; 30(4):231-7. PubMed ID: 180733 [No Abstract] [Full Text] [Related]
57. Myocardial membrane function and drug action in heart failure. Katz AM; Messineo FC Am Heart J; 1981 Sep; 102(3 Pt 2):491-500. PubMed ID: 6267921 [No Abstract] [Full Text] [Related]
58. [The regulatory role of membrane protein conformation in trans-sarcolemmal transport of cations during the contraction-relaxation cycle of the heart]. Vrbjar N; Ziegelhöffer A; Dŭrba A; Styk J Bratisl Lek Listy; 1986 Mar; 85(3):282-8. PubMed ID: 2420421 [No Abstract] [Full Text] [Related]
59. Differential alterations in ATP-supported calcium transport activities of sarcoplasmic reticulum and sarcolemma of aging myocardium. Narayanan N Biochim Biophys Acta; 1981 Dec; 678(3):442-59. PubMed ID: 6119116 [No Abstract] [Full Text] [Related]
60. Cardiac metabolsim: its contributions to alcoholic heart disease and myocardial failure. Bing RJ Circulation; 1978 Dec; 58(6):965-70. PubMed ID: 152168 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]