These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 6284263)
21. Electron transfer across the O2- generating flavocytochrome b of neutrophils. Evidence for a transition from a low-spin state to a high-spin state of the heme iron component. Doussière J; Gaillard J; Vignais PV Biochemistry; 1996 Oct; 35(41):13400-10. PubMed ID: 8873608 [TBL] [Abstract][Full Text] [Related]
22. Photoreductive titration of the resonance Raman spectra of cytochrome oxidase in whole mitochondria. Adar F; Erecińska M Biochemistry; 1979 May; 18(9):1825-9. PubMed ID: 219887 [TBL] [Abstract][Full Text] [Related]
23. Circular dichroism and resonance raman comparative studies of wild type cytochrome c and F82H mutant. Zheng J; Ye S; Lu T; Cotton TM; Chumanov G Biopolymers; 2000; 57(2):77-84. PubMed ID: 10766958 [TBL] [Abstract][Full Text] [Related]
24. Proton nuclear-magnetic-resonance and resonance Raman studies of thermophilic cytochrome c-552 from Thermus thermophilus HB8. Hon-Nami K; Kihara H; Kitagawa T; Miyazawa T; Oshima T Eur J Biochem; 1980 Sep; 110(1):217-23. PubMed ID: 6254761 [TBL] [Abstract][Full Text] [Related]
25. Structural analysis of myeloperoxidase by resonance Raman spectroscopy. Sibbett SS; Hurst JK Biochemistry; 1984 Jun; 23(13):3007-13. PubMed ID: 6087886 [TBL] [Abstract][Full Text] [Related]
26. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase. Okuno D; Iwase T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T J Am Chem Soc; 2003 Jun; 125(24):7209-18. PubMed ID: 12797794 [TBL] [Abstract][Full Text] [Related]
28. Resonance Raman spectroscopy and enhanced photoreducibility for the 420 nm pulsed form of cytochrome oxidase. Copeland RA; Naqui A; Chance B; Spiro TG FEBS Lett; 1985 Mar; 182(2):375-9. PubMed ID: 2984043 [TBL] [Abstract][Full Text] [Related]
29. Optical spectrum of myeloperoxidase. Origin of the red shift. Floris R; Kim Y; Babcock GT; Wever R Eur J Biochem; 1994 Jun; 222(2):677-85. PubMed ID: 8020506 [TBL] [Abstract][Full Text] [Related]
30. A comparison of the resonance Raman properties of the fast and slow forms of cytochrome oxidase. Schoonover JR; Dyer RB; Woodruff WH; Baker GM; Noguchi M; Palmer G Biochemistry; 1988 Jul; 27(15):5433-40. PubMed ID: 2846036 [TBL] [Abstract][Full Text] [Related]
31. Resonance Raman spectroscopy indicates a lysine as the sixth iron ligand in cytochrome f. Davis DJ; Frame MK; Johnson DA Biochim Biophys Acta; 1988 Oct; 936(1):61-6. PubMed ID: 2846050 [TBL] [Abstract][Full Text] [Related]
32. Direct observation of the methionine residues of cytochrome c by 13C nuclear magnetic resonance spectroscopy. Schejter A; Lanir A; Vig I; Cohen JS J Biol Chem; 1978 Jun; 253(11):3768-70. PubMed ID: 206551 [TBL] [Abstract][Full Text] [Related]
33. Resonance Raman spectra of anionic semiquinoid form of a flavoenzyme, D-amino acid oxidase. Nishina Y; Tojo H; Shiga K J Biochem; 1988 Aug; 104(2):227-31. PubMed ID: 2903145 [TBL] [Abstract][Full Text] [Related]
34. Continuous assessment of metabolic activity of mitochondria using resonance Raman microspectroscopy. Lalonde JW; Noojin GD; Pope NJ; Powell SM; Yakovlev VV; Denton ML J Biophotonics; 2021 Apr; 14(4):e202000384. PubMed ID: 33438837 [TBL] [Abstract][Full Text] [Related]
35. Resonance Raman spectra of cytochromes C557 and C558. Adar F Arch Biochem Biophys; 1977 May; 181(1):5-7. PubMed ID: 195537 [No Abstract] [Full Text] [Related]
36. The optical properties of heme a: resonance Raman scattering with visible excitation. Babcock GT; Ondrias MR; Gobeli DA; Vansteelandt J; Leroi GE FEBS Lett; 1979 Dec; 108(1):147-51. PubMed ID: 230078 [No Abstract] [Full Text] [Related]
37. Excited state lifetimes in cytochromes measured from Raman scattering data: evidence for iron-porphyrin interactions. Friedman JM; Rousseau DL; Adar F Proc Natl Acad Sci U S A; 1977 Jul; 74(7):2607-11. PubMed ID: 197515 [TBL] [Abstract][Full Text] [Related]
38. Study of redox and protonation processes of polyaniline by the differential multiwavelength Raman spectroelectrochemistry. Mažeikienė R; Niaura G; Malinauskas A Spectrochim Acta A Mol Biomol Spectrosc; 2019 Oct; 221():117147. PubMed ID: 31141757 [TBL] [Abstract][Full Text] [Related]
39. Raman spectroelectrochemical study of poly(N-methylaniline) at UV, blue, red, and NIR laser line excitations in solutions of different pH. Mažeikienė R; Niaura G; Malinauskas A Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jun; 274():121109. PubMed ID: 35286889 [TBL] [Abstract][Full Text] [Related]
40. Redox Imbalance and Biochemical Changes in Cancer by Probing Redox-Sensitive Mitochondrial Cytochromes in Label-Free Visible Resonance Raman Imaging. Abramczyk H; Brozek-Pluska B; Kopec M; Surmacki J; Błaszczyk M; Radek M Cancers (Basel); 2021 Feb; 13(5):. PubMed ID: 33668874 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]