These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 6284735)
21. Phosphorylation of DARPP-32, a dopamine- and cAMP-regulated phosphoprotein, by casein kinase II. Girault JA; Hemmings HC; Williams KR; Nairn AC; Greengard P J Biol Chem; 1989 Dec; 264(36):21748-59. PubMed ID: 2557337 [TBL] [Abstract][Full Text] [Related]
22. Opposite and mutually incompatible structural requirements of type-2 casein kinase and cAMP-dependent protein kinase as visualized with synthetic peptide substrates. Pinna LA; Meggio F; Marchiori F; Borin G FEBS Lett; 1984 Jun; 171(2):211-4. PubMed ID: 6586496 [TBL] [Abstract][Full Text] [Related]
23. Dephosphorylation of Ser-137 in DARPP-32 by protein phosphatases 2A and 2C: different roles in vitro and in striatonigral neurons. Desdouits F; Siciliano JC; Nairn AC; Greengard P; Girault JA Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):211-6. PubMed ID: 9461512 [TBL] [Abstract][Full Text] [Related]
24. Synthetic peptides including acidic clusters as substrates and inhibitors of rat liver casein kinase TS (type-2). Meggio F; Marchiori F; Borin G; Chessa G; Pinna LA J Biol Chem; 1984 Dec; 259(23):14576-9. PubMed ID: 6594339 [TBL] [Abstract][Full Text] [Related]
25. An investigation of the substrate specificity of protein phosphatase 2C using synthetic peptide substrates; comparison with protein phosphatase 2A. Donella Deana A; Mac Gowan CH; Cohen P; Marchiori F; Meyer HE; Pinna LA Biochim Biophys Acta; 1990 Feb; 1051(2):199-202. PubMed ID: 2155667 [TBL] [Abstract][Full Text] [Related]
26. An insulin-stimulated kemptide kinase purified from rat liver is deactivated by phosphatase 2A. Klarlund JK; Jaspers SR; Khalaf N; Bradford AP; Miller TB; Czech MP J Biol Chem; 1991 Mar; 266(7):4052-5. PubMed ID: 1847913 [TBL] [Abstract][Full Text] [Related]
27. Regulation of protein phosphatase-1G from rabbit skeletal muscle. 1. Phosphorylation by cAMP-dependent protein kinase at site 2 releases catalytic subunit from the glycogen-bound holoenzyme. Hubbard MJ; Cohen P Eur J Biochem; 1989 Dec; 186(3):701-9. PubMed ID: 2558013 [TBL] [Abstract][Full Text] [Related]
28. The substrate specificity of adenosine 3':5'-cyclic monophosphate-dependent protein kinase of rabbit skeletal muscle. Yeaman SJ; Cohen P; Watson DC; Dixon GH Biochem J; 1977 Feb; 162(2):411-21. PubMed ID: 192223 [TBL] [Abstract][Full Text] [Related]
29. Specificity of protein phosphotyrosine phosphatases. Comparison with mammalian alkaline phosphatase using polypeptide substrates. Sparks JW; Brautigan DL J Biol Chem; 1985 Feb; 260(4):2042-5. PubMed ID: 2982803 [TBL] [Abstract][Full Text] [Related]
30. Sequence of the phosphothreonyl regulatory site peptide from inactive maize leaf pyruvate, orthophosphate dikinase. Roeske CA; Kutny RM; Budde RJ; Chollet R J Biol Chem; 1988 May; 263(14):6683-7. PubMed ID: 2834385 [TBL] [Abstract][Full Text] [Related]
31. Identification and characterization of cAMP-dependent protein kinase and its possible direct interactions with protein phosphatase-1 in marine dinoflagellates. Dawson JF; Wang KH; Holmes CF Biochem Cell Biol; 1996; 74(4):559-67. PubMed ID: 8960362 [TBL] [Abstract][Full Text] [Related]
32. Molecular basis for substrate specificity of protein kinases and phosphatases. Sparks JW; Brautigan DL Int J Biochem; 1986; 18(6):497-504. PubMed ID: 3011539 [TBL] [Abstract][Full Text] [Related]
33. Fluorometric assay for adenosine 3',5'-cyclic monophosphate-dependent protein kinase and phosphoprotein phosphatase activities. Wright DE; Noiman ES; Chock PB; Chau V Proc Natl Acad Sci U S A; 1981 Oct; 78(10):6048-50. PubMed ID: 6273844 [TBL] [Abstract][Full Text] [Related]
34. Dephosphorylation of cardiac myofibril C-protein by protein phosphatase 1 and protein phosphatase 2A. Schlender KK; Hegazy MG; Thysseril TJ Biochim Biophys Acta; 1987 May; 928(3):312-9. PubMed ID: 3032283 [TBL] [Abstract][Full Text] [Related]
35. Phosphorylation of synthetic fragments of inhibitor-2 of protein phosphatase-1 by casein kinase-1 and -2. Evidence that phosphorylated residues are not strictly required for efficient targeting by casein kinase-1. Marin O; Meggio F; Sarno S; Andretta M; Pinna LA Eur J Biochem; 1994 Jul; 223(2):647-53. PubMed ID: 8055935 [TBL] [Abstract][Full Text] [Related]
36. An analysis of the substrate specificity of insulin-stimulated protein kinase-1, a mammalian homologue of S6 kinase-II. Donella-Deana A; Lavoinne A; Marin O; Pinna LA; Cohen P Biochim Biophys Acta; 1993 Aug; 1178(2):189-93. PubMed ID: 8347677 [TBL] [Abstract][Full Text] [Related]
37. Phosphorylation and dephosphorylation of glycogen phosphorylase: a prototype for reversible covalent enzyme modification. Krebs EG Curr Top Cell Regul; 1981; 18():401-19. PubMed ID: 6268366 [No Abstract] [Full Text] [Related]
38. Identification of the sites of selective phosphorylation and dephosphorylation of the rat brain Na+ channel alpha subunit by cAMP-dependent protein kinase and phosphoprotein phosphatases. Murphy BJ; Rossie S; De Jongh KS; Catterall WA J Biol Chem; 1993 Dec; 268(36):27355-62. PubMed ID: 8262976 [TBL] [Abstract][Full Text] [Related]
39. Phosphopeptides as substrates for thylakoid protein phosphatase activity. Sun G; Sarath G; Markwell J Arch Biochem Biophys; 1993 Aug; 304(2):490-5. PubMed ID: 8394059 [TBL] [Abstract][Full Text] [Related]
40. Dephosphorylation of abnormal sites of tau factor by protein phosphatases and its implication for Alzheimer's disease. Ono T; Yamamoto H; Tashima K; Nakashima H; Okumura E; Yamada K; Hisanaga S; Kishimoto T; Miyakawa T; Miyamoto E Neurochem Int; 1995 Mar; 26(3):205-15. PubMed ID: 7787767 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]