BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6284753)

  • 1. Secondary bioenergetic hypoxia. Inhibition of sulfation and glucuronidation reactions in isolated hepatocytes at low O2 concentration.
    Aw TY; Jones DP
    J Biol Chem; 1982 Aug; 257(15):8997-9004. PubMed ID: 6284753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of chronic hypoxia on acetaminophen metabolism in the rat.
    Aw TY; Shan XQ; Sillau AH; Jones DP
    Biochem Pharmacol; 1991 Aug; 42(5):1029-38. PubMed ID: 1872890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of glucuronidation and sulfation by dibutyryl cyclic AMP in isolated rat hepatocytes.
    Shipley LA; Eacho PI; Sweeny DJ; Weiner M
    Drug Metab Dispos; 1986; 14(5):526-31. PubMed ID: 2876857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of acetaminophen sulfation by 2,6-dichloro-4-nitrophenol in the perfused rat liver preparation. Lack of a compensatory increase of glucuronidation.
    Fayz S; Cherry WF; Dawson JR; Mulder GJ; Pang KS
    Drug Metab Dispos; 1984; 12(3):323-9. PubMed ID: 6145559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucuronidation and sulfation of p-nitrophenol in isolated rat hepatocyte subpopulations. Effects of phenobarbital and 3-methylcholanthrene pretreatment.
    Tonda K; Hirata M
    Chem Biol Interact; 1983 Dec; 47(3):277-87. PubMed ID: 6606497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on effects of p-phenylbenzoic acid on change of sulfation and glucuronidation in rats.
    Nanbo A; Nanbo T
    Biol Pharm Bull; 2002 May; 25(5):686-9. PubMed ID: 12033518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfation and glucuronidation of acetaminophen by cultured hepatocytes reproducing in vivo sex-differences in conjugation on Matrigel and type 1 collagen.
    Kane RE; Tector J; Brems JJ; Li A; Kaminski D
    In Vitro Cell Dev Biol; 1991 Dec; 27A(12):953-60. PubMed ID: 1757400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normal and retrograde perfusion to probe the zonal distribution of sulfation and glucuronidation activities of harmol in the perfused rat liver preparation.
    Pang KS; Koster H; Halsema IC; Scholtens E; Mulder GJ; Stillwell RN
    J Pharmacol Exp Ther; 1983 Mar; 224(3):647-53. PubMed ID: 6827487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of sulfation and glucuronidation of harmol in the perfused rat liver preparation. Disappearance of aberrances in glucuronidation kinetics by inhibition of sulfation.
    Koster H; Halsema I; Scholtens E; Pang KS; Mulder GJ
    Biochem Pharmacol; 1982 Oct; 31(19):3023-8. PubMed ID: 7150332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extramitochondrial ATP/ADP-ratios regulate cytochrome c oxidase activity via binding to the cytosolic domain of subunit IV.
    Napiwotzki J; Kadenbach B
    Biol Chem; 1998 Mar; 379(3):335-9. PubMed ID: 9563830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors influencing sulfation in isolated rat hepatocytes.
    Sundheimer DW; Brendel K
    Life Sci; 1984 Jan; 34(1):23-9. PubMed ID: 6694509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atrial bioenergetic variations in moderate hypoxia: danger or protective defense?
    Caparrotta L; Poja R; Ragazzi E; Froldi G; Pandolfo L; Prosdocimi M; Fassina G
    Basic Res Cardiol; 1989; 84(5):449-60. PubMed ID: 2818445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of precursors of biosyntheses on the energy metabolism of the liver cell.
    Letko G; Küster U; Pohl K
    Biomed Biochim Acta; 1983; 42(4):323-33. PubMed ID: 6312977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy metabolism and in vivo cytochrome c oxidase redox relationships in hypoxic rat brain.
    Sylvia AL; Piantadosi CA; Jöbsis-VanderVliet FF
    Neurol Res; 1985 Jun; 7(2):81-8. PubMed ID: 2863774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative stress and adenine nucleotide control of mitochondrial permeability transition.
    Kantrow SP; Tatro LG; Piantadosi CA
    Free Radic Biol Med; 2000 Jan; 28(2):251-60. PubMed ID: 11281292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic adaptation to hypoxia. Redox state of the cellular free NAD pools, phosphorylation state of the adenylate system and the (Na+-K+)-stimulated ATP-ase in rat liver.
    Kinnula VL; Hassinen I
    Acta Physiol Scand; 1978 Sep; 104(1):109-16. PubMed ID: 211796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. O2 uptake in periportal and pericentral regions of liver lobule in perfused liver.
    Matsumura T; Kauffman FC; Meren H; Thurman RG
    Am J Physiol; 1986 Jun; 250(6 Pt 1):G800-5. PubMed ID: 3717341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacokinetics of troglitazone, an antidiabetic agent: prediction of in vivo stereoselective sulfation and glucuronidation from in vitro data.
    Izumi T; Hosiyama K; Enomoto S; Sasahara K; Sugiyama Y
    J Pharmacol Exp Ther; 1997 Mar; 280(3):1392-400. PubMed ID: 9067328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous distribution of the conjugation activity of acetaminophen and p-nitrophenol in isolated rat liver cells.
    Araya H; Mizuma T; Horie T; Hayashi M; Awazu S
    J Pharmacobiodyn; 1986 Feb; 9(2):218-22. PubMed ID: 3712218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular oxygen supply during hypoxia.
    Jones DP; Kennedy FG
    Am J Physiol; 1982 Nov; 243(5):C247-53. PubMed ID: 7137335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.