BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 6284859)

  • 61. The visual system of the Florida garfish, Lepisosteus platyrhincus (Ginglymodi). I. Retina.
    Collin SP; Collin HB
    Brain Behav Evol; 1993; 42(2):77-97. PubMed ID: 8353723
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Retinol dehydrogenase 8 and ATP-binding cassette transporter 4 modulate dark adaptation of M-cones in mammalian retina.
    Kolesnikov AV; Maeda A; Tang PH; Imanishi Y; Palczewski K; Kefalov VJ
    J Physiol; 2015 Nov; 593(22):4923-41. PubMed ID: 26350353
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Retinomotor activity and the c-wave of the hypoxic trout retina.
    Ubels JL
    Invest Ophthalmol Vis Sci; 1979 Jul; 18(7):756-61. PubMed ID: 447474
    [TBL] [Abstract][Full Text] [Related]  

  • 64. N-ethylmaleimide-modified subfragment-1 and heavy meromyosin inhibit reactivated contraction in motile models of retinal cones.
    Porrello K; Cande WZ; Burnside B
    J Cell Biol; 1983 Feb; 96(2):449-54. PubMed ID: 6833364
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Thin (actin) and thick (myosinlike) filaments in cone contraction in the teleost retina.
    Burnside B
    J Cell Biol; 1978 Jul; 78(1):227-46. PubMed ID: 566760
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cyclic GMP increases photocurrent and light sensitivity of retinal cones.
    Cobbs WH; Barkdoll AE; Pugh EN
    Nature; 1985 Sep 5-11; 317(6032):64-6. PubMed ID: 2993915
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A latitudinal cline in the efficacy of endogenous signals: evidence derived from retinal cone contraction in fish.
    Yammouni R; Bozzano A; Douglas RH
    J Exp Biol; 2011 Feb; 214(Pt 3):501-8. PubMed ID: 21228209
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fine structure of the retina and pigment epithelium in the creek chub, Semotilus atromaculatus (Cyprinidae, Teleostei).
    Collin SP; Collin HB; Ali MA
    Histol Histopathol; 1996 Jan; 11(1):41-53. PubMed ID: 8720447
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Circadian Rhythms of Retinomotor Movement in a Marine Megapredator, the Atlantic Tarpon, Megalops atlanticus.
    Kopperud KL; Grace MS
    Int J Mol Sci; 2017 Sep; 18(10):. PubMed ID: 28956858
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Identification of cyclic nucleotide-regulated phosphoproteins, including phosducin, in motile rod inner-outer segments of teleosts.
    Pagh-Roehl K; Han E; Burnside B
    Exp Eye Res; 1993 Dec; 57(6):679-91. PubMed ID: 8150021
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Microtubules in cone myoid elongation in the teleost retina.
    Warren RH; Brunside B
    J Cell Biol; 1978 Jul; 78(1):247-59. PubMed ID: 670294
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Periodic cone cell twists in the walleye, Stizostedion vitreum; a new type of retinomotor activity.
    Wahl CM
    Vision Res; 1994 Jan; 34(1):11-8. PubMed ID: 8116262
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Retinal photoreceptor fine structure in the red-backed salamander (Plethodon cinereus).
    Braekevelt CR
    Histol Histopathol; 1992 Jul; 7(3):463-70. PubMed ID: 1504467
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Phosducin and PP33 are in vivo targets of PKA and type 1 or 2A phosphatases, regulators of cell elongation in teleost rod inner-outer segments.
    Pagh-Roehl K; Lin D; Su L; Burnside B
    J Neurosci; 1995 Oct; 15(10):6475-88. PubMed ID: 7472410
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Guanosine 3',5'-cyclic monophosphate and the in vitro physiology of frog photoreceptor membranes.
    Woodruff ML; Bownds D; Green SH; Morrisey JL; Shedlovsky A
    J Gen Physiol; 1977 May; 69(5):667-79. PubMed ID: 194013
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Retinal photoreceptor fine structure in the short-tailed stingray (Dasyatis brevicaudata).
    Braekevelt CR
    Histol Histopathol; 1994 Jul; 9(3):507-14. PubMed ID: 7981499
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The eye of the venomous marine teleost Trachinus vipera with special reference to the structure and ultrastructure of visual cells and pigment epithelium.
    Kunz YW; Ni Shuilleabhain M; Callaghan E
    Exp Biol; 1985; 43(3):161-78. PubMed ID: 3846536
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cyclic nucleotide distribution in identified layers of suprafused rabbit retinas.
    Blazynski C; Cohen AI
    Exp Eye Res; 1984 Mar; 38(3):279-90. PubMed ID: 6202537
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Dark-adaptive cone elongation in the blue acara retina is triggered by green-sensitive cones.
    Wagner HJ; Kath D; Douglas RH; Kirsch M
    Vis Neurosci; 1993; 10(3):523-7. PubMed ID: 8494803
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Circadian changes in the retinal pigment epithelium of the butterfly fish (Pantodon buchholzi).
    Braekevelt CR
    Anat Anz; 1990; 171(4):284-92. PubMed ID: 2080821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.