These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6284895)

  • 21. Characteristics of methylcellulose acid gel lesions created in human and bovine enamel.
    Lippert F; Butler A; Lynch RJ
    Caries Res; 2013; 47(1):50-5. PubMed ID: 23108261
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical and structural challenges in remineralization of dental enamel lesions.
    Larsen MJ; Fejerskov O
    Scand J Dent Res; 1989 Aug; 97(4):285-96. PubMed ID: 2799268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of Knoop and Vickers surface microhardness and transverse microradiography for the study of early caries lesion formation in human and bovine enamel.
    Lippert F; Lynch RJ
    Arch Oral Biol; 2014 Jul; 59(7):704-10. PubMed ID: 24798979
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Organic volume and permeability variations in the surface layer of artificial and natural enamel carious lesions.
    de Holanda Ferreira DA; Rolim de Abreu NM; Meira KRS; de Sousa FB
    Arch Oral Biol; 2023 Apr; 148():105645. PubMed ID: 36804643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wavelength-independent microradiography used for quantification of mineral changes in thin enamel and dentin samples with natural surfaces, pseudo-thick tooth sections, and whole teeth.
    Herkströter FM; Noordmans J; Ten Bosch JJ
    J Dent Res; 1990 Dec; 69(12):1824-7. PubMed ID: 2250087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of the distribution and orientation of remineralized enamel crystallites in subsurface lesions by X-ray diffraction.
    Tanaka T; Yagi N; Ohta T; Matsuo Y; Terada H; Kamasaka K; To-o K; Kometani T; Kuriki T
    Caries Res; 2010; 44(3):253-9. PubMed ID: 20516685
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface layer phenomena in in-vitro early caries-like lesions of human tooth enamel.
    Featherstone JD; Duncan JF; Cutress TW
    Arch Oral Biol; 1978; 23(5):397-404. PubMed ID: 278578
    [No Abstract]   [Full Text] [Related]  

  • 28. Microradiography and electron-microprobe analysis of some caries-like lesions of enamel prepared in vitro in human teeth.
    Driessens FC; Theuns HM; Heijligers HJ; Borggreven JM
    Arch Oral Biol; 1986; 31(12):837-40. PubMed ID: 3479959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enamel remineralization as a factor in the pathogenesis of dental caries.
    Koulourides T; Cameron B
    J Oral Pathol; 1980 Sep; 9(5):255-69. PubMed ID: 6780667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Suitability of human, bovine, equine, and ovine tooth enamel for studies of artificial bacterial carious lesions.
    Edmunds DH; Whittaker DK; Green RM
    Caries Res; 1988; 22(6):327-36. PubMed ID: 3214846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel electron-microscopic method for measurement of mineral content in enamel lesions.
    Fowler C; Lynch RJM; Shingler D; Walsh D; Carson C; Neale A; Willson RJ; Brown A
    Arch Oral Biol; 2018 Oct; 94():10-15. PubMed ID: 29929069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SEM and microradiographic investigation of initial enamel caries.
    Arends J; Jongebloed W; Ogaard B; Rölla G
    Scand J Dent Res; 1987 Jun; 95(3):193-201. PubMed ID: 3474760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of micro-computed tomography and scanning electron microscopy with energy-dispersive spectroscopy to distinguish natural white spot enamel lesions from sound enamel in human premolars.
    Chaiwat A; Thirasupa N; Ajcharanukul O
    J Oral Sci; 2024; 66(1):50-54. PubMed ID: 38233154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mineral distributions in enamel after in vivo de- and remineralization.
    Van Herpen BP; Arends J
    J Biol Buccale; 1987 Sep; 15(3):199-204. PubMed ID: 3483368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Re- and Demineralization Characteristics of Enamel Depending on Baseline Mineral Loss and Lesion Depth in situ.
    Wierichs RJ; Lausch J; Meyer-Lueckel H; Esteves-Oliveira M
    Caries Res; 2016; 50(2):141-50. PubMed ID: 27043915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of a chewing gum containing phosphoryl oligosaccharides of calcium (POs-Ca) and fluoride on remineralization and crystallization of enamel subsurface lesions in situ.
    Kitasako Y; Tanaka M; Sadr A; Hamba H; Ikeda M; Tagami J
    J Dent; 2011 Nov; 39(11):771-9. PubMed ID: 21875640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correlated microradiography, X-ray microbeam diffraction and electron probe microanalysis of calcifications in an odontoma.
    Aoba T; Yoshioka C; Yagi T
    J Oral Pathol; 1980 Sep; 9(5):280-7. PubMed ID: 6780669
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of the arrangement of crystallites in gamma-irradiated human enamel by electron paramagnetic resonance.
    Cevc P; Schara M; Ravnik C; Skaleric U
    J Dent Res; 1976; 55(4):691-5. PubMed ID: 180069
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Silver diamine fluoride remineralized artificial incipient caries in permanent teeth after bacterial pH-cycling in-vitro.
    Punyanirun K; Yospiboonwong T; Kunapinun T; Thanyasrisung P; Trairatvorakul C
    J Dent; 2018 Feb; 69():55-59. PubMed ID: 28918101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of human serum albumin in human caries lesions of enamel: the role of putative inhibitors of remineralisation.
    Robinson C; Shore RC; Bonass WA; Brookes SJ; Boteva E; Kirkham J
    Caries Res; 1998; 32(3):193-9. PubMed ID: 9577984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.