These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 6285108)

  • 21. Three-dimensional quantitative autoradiography by disparity analysis: theory and application to image averaging of local cerebral glucose utilization.
    Zhao W; Ginsberg MD; Smith DW
    J Cereb Blood Flow Metab; 1995 Jul; 15(4):552-65. PubMed ID: 7790405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advances in image processing for autoradiography.
    Nissanov J; McEachron DL
    J Chem Neuroanat; 1991; 4(5):329-42. PubMed ID: 1958321
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative receptor autoradiography in the human brain. Methodical aspects.
    Zilles K; Schleicher A; Rath M; Bauer A
    Histochemistry; 1988; 90(2):129-37. PubMed ID: 2852661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative Autoradiographic Method for Determination of Regional Rates of Cerebral Protein Synthesis In Vivo.
    Saré RM; Torossian A; Rosenheck M; Huang T; Beebe Smith C
    J Vis Exp; 2019 Jun; (148):. PubMed ID: 31305519
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glucose availability to individual cerebral structures is correlated to glucose metabolism.
    Hawkins RA; Mans AM; Davis DW; Hibbard LS; Lu DM
    J Neurochem; 1983 Apr; 40(4):1013-8. PubMed ID: 6834033
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous determination of local cerebral glucose utilization and blood flow by carbon-14 double-label autoradiography: method of procedure and validation studies in the rat.
    Ginsberg MD; Smith DW; Wachtel MS; Gonzalez-Carvajal M; Busto R
    J Cereb Blood Flow Metab; 1986 Jun; 6(3):273-85. PubMed ID: 3711156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Triple-tracer autoradiography of cerebral blood flow, glucose utilization, and protein synthesis in rat brain.
    Mies G; Bodsch W; Paschen W; Hossmann KA
    J Cereb Blood Flow Metab; 1986 Feb; 6(1):59-70. PubMed ID: 3944217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simplified method for computerized densitometry of complex shapes in 2-deoxyglucose autoradiographs.
    Kauer JS; Reddy D; Duckrow RB; Shepherd GM
    J Neurosci Methods; 1984 Aug; 11(3):143-58. PubMed ID: 6492858
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An in vitro circadian rhythm of protein synthesis in the rat suprachiasmatic nucleus under tissue culture conditions.
    Shibata S; Hamada T; Tominaga K; Watanabe S
    Brain Res; 1992 Jul; 584(1-2):251-6. PubMed ID: 1515943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An inexpensive microcomputer-based image-analysis system: novel applications to quantitative autoradiography.
    Isseroff A; Lancet D
    J Neurosci Methods; 1985 Feb; 12(4):265-75. PubMed ID: 3990339
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tomographic mapping of kinetic rate constants in the fluorodeoxyglucose model using dynamic positron emission tomography.
    Sasaki H; Kanno I; Murakami M; Shishido F; Uemura K
    J Cereb Blood Flow Metab; 1986 Aug; 6(4):447-54. PubMed ID: 3488323
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microcomputer-based digital image analysis system for quantitative autoradiography.
    Hoffman TJ; Volkert WA; Holmes RA
    Am J Physiol Imaging; 1988; 3(2):81-90. PubMed ID: 3395483
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neurotransmitter receptors in the forebrain: regional and laminar distribution.
    Zilles K
    Prog Histochem Cytochem; 1992; 26(1-4):229-40. PubMed ID: 1336612
    [No Abstract]   [Full Text] [Related]  

  • 34. Uncoupling of cerebral blood flow and metabolism after cerebral contusion in the rat.
    Richards HK; Simac S; Piechnik S; Pickard JD
    J Cereb Blood Flow Metab; 2001 Jul; 21(7):779-81. PubMed ID: 11435789
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential glucose utilization in the parafascicular region during slow-wave sleep, the still-alert state and locomotion.
    Pavlides C; Aoki C; Chen JS; Bailey WH; Winson J
    Brain Res; 1987 Oct; 423(1-2):399-402. PubMed ID: 3676818
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative autoradiography of [3H]ouabain binding sites in rat brain.
    Spyropoulos AC; Rainbow TC
    Brain Res; 1984 Nov; 322(1):189-93. PubMed ID: 6097336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Quantitative measurement of brain metabolism by positron CT].
    Shinotoh H; Tateno Y
    Nihon Rinsho; 1985 Feb; 43(2):329-33. PubMed ID: 2987568
    [No Abstract]   [Full Text] [Related]  

  • 38. Simultaneous measurement of local glucose utilization and blood flow in the rat brain: an autoradiographic method using two tracers labeled with carbon-14.
    Furlow TW; Martin RM; Harrison LE
    J Cereb Blood Flow Metab; 1983 Mar; 3(1):62-6. PubMed ID: 6822619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resolution, sensitivity and precision with autoradiography and small animal positron emission tomography: implications for functional brain imaging in animal research.
    Schmidt KC; Smith CB
    Nucl Med Biol; 2005 Oct; 32(7):719-25. PubMed ID: 16243647
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A sequential double-label autoradiographic method that quantifies altered rates of regional glucose metabolism.
    Olds JL; Frey KA; Ehrenkaufer RL; Agranoff BW
    Brain Res; 1985 Dec; 361(1-2):217-24. PubMed ID: 4084794
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.