These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The proton pump ATPase of lysosomes and related organelles of the vacuolar apparatus. Schneider DL Biochim Biophys Acta; 1987; 895(1):1-10. PubMed ID: 2449908 [TBL] [Abstract][Full Text] [Related]
3. The acidification of rat liver lysosomes in vitro: a role for the membranous ATPase as a proton pump. Schneider DL Biochem Biophys Res Commun; 1979 Mar; 87(2):559-65. PubMed ID: 87191 [No Abstract] [Full Text] [Related]
6. Functions of subunits of H+-ATPase. Kagawa Y; Ohta S; Yoshida M; Sone N Ann N Y Acad Sci; 1980; 358():103-17. PubMed ID: 6259984 [No Abstract] [Full Text] [Related]
7. Regulation of transepithelial H+ transport by exocytosis and endocytosis. Schwartz GJ; Al-Awqati Q Annu Rev Physiol; 1986; 48():153-61. PubMed ID: 2423020 [No Abstract] [Full Text] [Related]
8. Thermodynamic and kinetic properties of electrogenic ion pumps. Läuger P Biochim Biophys Acta; 1984 Sep; 779(3):307-41. PubMed ID: 6089889 [No Abstract] [Full Text] [Related]
9. ATP-driven H+ pumping into intracellular organelles. Rudnick G Annu Rev Physiol; 1986; 48():403-13. PubMed ID: 3010820 [No Abstract] [Full Text] [Related]
10. Regulation of lysosomal ion homeostasis by channels and transporters. Xiong J; Zhu MX Sci China Life Sci; 2016 Aug; 59(8):777-91. PubMed ID: 27430889 [TBL] [Abstract][Full Text] [Related]
11. Methods for monitoring Ca Zhong XZ; Yang Y; Sun X; Dong XP Cell Calcium; 2017 Jun; 64():20-28. PubMed ID: 27986285 [TBL] [Abstract][Full Text] [Related]
12. Ion channels as potential redox sensors in lysosomes. Yu J; Yang J Channels (Austin); 2019 Dec; 13(1):477-482. PubMed ID: 31662029 [TBL] [Abstract][Full Text] [Related]
13. The hidden potential of lysosomal ion channels: A new era of oncogenes. Sterea AM; Almasi S; El Hiani Y Cell Calcium; 2018 Jun; 72():91-103. PubMed ID: 29748137 [TBL] [Abstract][Full Text] [Related]
14. Primary and secondary transport of cations in bacteria. Harold FM; Kakinuma Y Ann N Y Acad Sci; 1985; 456():375-83. PubMed ID: 2418733 [No Abstract] [Full Text] [Related]
15. Reconstitution of the energy transformer, gate and channel subunit reassembly, crystalline ATPase and ATP synthesis. Kagawa Y Biochim Biophys Acta; 1978 Sep; 505(1):45-93. PubMed ID: 30482 [No Abstract] [Full Text] [Related]
16. An abnormal calcium uptake pump in Chediak-Higashi neutrophil lysosomes. Styrt B; Pollack CR; Klempner MS J Leukoc Biol; 1988 Aug; 44(2):130-5. PubMed ID: 2457062 [TBL] [Abstract][Full Text] [Related]
17. Effects of some antimalarials and related substances on intralysosomal proteolysis. Mego JL; Chung CH Biochem Pharmacol; 1979; 28(4):465-70. PubMed ID: 34405 [No Abstract] [Full Text] [Related]
18. E. coli F1-ATPase interacts with a membrane protein component of a proton channel. Walker JE; Saraste M; Gay NJ Nature; 1982 Aug; 298(5877):867-9. PubMed ID: 6180323 [TBL] [Abstract][Full Text] [Related]
19. Some remarks on the integrated actions of pumps, cotransporters and channels. Slayman CL J Exp Biol; 1992 Nov; 172():267-70. PubMed ID: 1283401 [No Abstract] [Full Text] [Related]
20. Barrier models for the description of proton transport across membranes. Läuger P Methods Enzymol; 1986; 127():465-71. PubMed ID: 2426560 [No Abstract] [Full Text] [Related] [Next] [New Search]