These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 6285261)

  • 1. Superoxide generation by human fetal granulocytes.
    Newburger PE
    Pediatr Res; 1982 May; 16(5):373-6. PubMed ID: 6285261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superoxide production by digitonin-stimulated guinea pig granulocytes. The effects of N-ethyl maleimide, divalent cations; and glycolytic and mitochondrial inhibitors on the activation of the superoxide generating system.
    Cohen HJ; Chovaniec ME
    J Clin Invest; 1978 Apr; 61(4):1088-96. PubMed ID: 207722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opsonized zymosan-stimulated granulocytes-activation and activity of the superoxide-generating system and membrane potential changes.
    Cohen HJ; Newburger PE; Chovaniec ME; Whitin JC; Simons ER
    Blood; 1981 Nov; 58(5):975-82. PubMed ID: 6271311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity and activation of the granulocyte superoxide-generating system.
    Newburger PE; Chovaniec ME; Cohen HJ
    Blood; 1980 Jan; 55(1):85-92. PubMed ID: 6243219
    [No Abstract]   [Full Text] [Related]  

  • 5. Comparative superoxide-generating system of granulocytes from blood and peritoneal exudates.
    Zimmerli W; Lew PD; Cohen HJ; Waldvogel FA
    Infect Immun; 1984 Dec; 46(3):625-30. PubMed ID: 6094353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between membrane potential changes and superoxide production in human granulocytes stimulated by phorbol myristate acetate. Evidence for defective activation in chronic granulomatous disease.
    Whitin JC; Chapman CE; Simons ER; Chovaniec ME; Cohen HJ
    J Biol Chem; 1980 Mar; 255(5):1874-8. PubMed ID: 6243652
    [No Abstract]   [Full Text] [Related]  

  • 7. Functional maturation of membrane potential changes and superoxide-producing capacity during differentiation of human granulocytes.
    Kitagawa S; Ohta M; Nojiri H; Kakinuma K; Saito M; Takaku F; Miura Y
    J Clin Invest; 1984 Apr; 73(4):1062-71. PubMed ID: 6200501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired production of nitric oxide, superoxide, and hydrogen peroxide in glucose 6-phosphate-dehydrogenase-deficient granulocytes.
    Tsai KJ; Hung IJ; Chow CK; Stern A; Chao SS; Chiu DT
    FEBS Lett; 1998 Oct; 436(3):411-4. PubMed ID: 9801159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 8-Hydroxydeoxyguanosine in DNA from TPA-stimulated human granulocytes.
    Birnboim HC; Maidt L; Raynor T; Floyd RA
    Free Radic Res; 1994 Feb; 20(2):113-7. PubMed ID: 8012524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Levels of DNA strand breaks and superoxide in phorbol ester-treated human granulocytes.
    Birnboim HC; Sandhu JK
    J Cell Biochem; 1997 Aug; 66(2):219-28. PubMed ID: 9213223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissociation between aggregation and superoxide production in human granulocytes.
    Whitin JC; Cohen HJ
    J Immunol; 1985 Feb; 134(2):1206-11. PubMed ID: 2981262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is activation of the granulocyte by concanavalin-A a reversible process?
    Cohen HJ; Whitin JC; Chovaniec ME; Tape EH; Simons ER
    Blood; 1984 Jan; 63(1):114-20. PubMed ID: 6317085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superoxide generation by digitonin-stimulated guinea pig granulocytes. A basis for a continuous assay for monitoring superoxide production and for the study of the activation of the generating system.
    Cohen HJ; Chovaniec ME
    J Clin Invest; 1978 Apr; 61(4):1081-7. PubMed ID: 26695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between (-)naloxone and morphine in modifying superoxide generation from human granulocytes.
    Ricevuti G; Mazzone A; Pasotti D; Marcoli M; De Ponti F; Lecchini S; Frigo GM
    Immunopharmacol Immunotoxicol; 1992; 14(3):515-21. PubMed ID: 1325492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of superoxide production by stimulated neutrophils.
    Black CD; Samuni A; Cook JA; Krishna CM; Kaufman DC; Malech HL; Russo A
    Arch Biochem Biophys; 1991 Apr; 286(1):126-31. PubMed ID: 1654777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recombinant interferon gamma augments phagocyte superoxide production and X-chronic granulomatous disease gene expression in X-linked variant chronic granulomatous disease.
    Ezekowitz RA; Orkin SH; Newburger PE
    J Clin Invest; 1987 Oct; 80(4):1009-16. PubMed ID: 2821069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of the guinea pig granulocyte NAD(P)H-dependent superoxide generating enzyme: localization in a plasma membrane enriched particle and kinetics of activation.
    Cohen HJ; Chovaniec ME; Davies WA
    Blood; 1980 Mar; 55(3):355-63. PubMed ID: 6244012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential stimulation by oxygen-free-radical-altered immunoglobulin G of the production of superoxide and hydrogen peroxide by human polymorphonuclear leucocytes.
    Kleinveld HA; Sluiter W; Boonman AM; Swaak AJ; Hack CE; Koster JF
    Clin Sci (Lond); 1991 Apr; 80(4):385-91. PubMed ID: 1851075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological defense mechanisms. The effect of bacteria and serum on superoxide production by granulocytes.
    Curnutte JT; Babior BM
    J Clin Invest; 1974 Jun; 53(6):1662-72. PubMed ID: 4364409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The release of superoxide anion from granulocytes: effect of inhibitors of anion permeability.
    Gennaro R; Romeo D
    Biochem Biophys Res Commun; 1979 May; 88(1):44-9. PubMed ID: 222288
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.