These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 6285615)

  • 1. [Regulatory enzymopathies].
    Kagan ZS
    Vopr Med Khim; 1982; 28(3):73-80. PubMed ID: 6285615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defects of enzyme regulation in metabolic disease.
    Galton DJ; Betteridge DJ; Taylor KG; Holdsworth G; Stocks J
    Clin Sci Mol Med; 1977 Sep; 53(3):197-203. PubMed ID: 199395
    [No Abstract]   [Full Text] [Related]  

  • 3. [Characteristics of L-threonine- and L-serine dehydratases from mouse liver and spontaneous hepatomas].
    Akopov MA; Berezov TT; Kagan ZS
    Vopr Med Khim; 1978; 24(3):394-401. PubMed ID: 208290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Kinetic and allosteric properties of L-threonine-L-serine dehydratase from human liver].
    Akopov MA; Kagan ZC; Berezov TT; Filiptsev PIa
    Biokhimiia; 1979 Feb; 44(2):282-92. PubMed ID: 435568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow ligand-induced transitions in the allosteric phosphofructokinase from Escherichia coli.
    Auzat I; Gawlita E; Garel JR
    J Mol Biol; 1995 Jun; 249(2):478-92. PubMed ID: 7783204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and regulatory properties of L-threonine-L-serine dehydratase from human liver and mice hepatoma.
    Berezov TT; Akopov MA; Kagan ZS
    Prog Clin Biol Res; 1982; 102 Pt C():333-43. PubMed ID: 7167466
    [No Abstract]   [Full Text] [Related]  

  • 7. Allosteric regulation of biosynthetic threonine deaminase from Escherichia coli: effects of isoleucine and valine on active-site ligand binding and catalysis.
    Eisenstein E
    Arch Biochem Biophys; 1995 Jan; 316(1):311-8. PubMed ID: 7840631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles for fructose-2,6-bisphosphate in the control of fuel metabolism: beyond its allosteric effects on glycolytic and gluconeogenic enzymes.
    Wu C; Khan SA; Peng LJ; Lange AJ
    Adv Enzyme Regul; 2006; 46():72-88. PubMed ID: 16860376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed mutagenesis of the regulatory domain of Escherichia coli carbamoyl phosphate synthetase identifies crucial residues for allosteric regulation and for transduction of the regulatory signals.
    Fresquet V; Mora P; Rochera L; Ramón-Maiques S; Rubio V; Cervera J
    J Mol Biol; 2000 Jun; 299(4):979-91. PubMed ID: 10843852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Hereditary enzymopathies: problems and prospects].
    Vidershoĭn GIa
    Vopr Med Khim; 1982; 28(3):22-31. PubMed ID: 7048733
    [No Abstract]   [Full Text] [Related]  

  • 11. Allosteric regulation of Bacillus subtilis threonine deaminase, a biosynthetic threonine deaminase with a single regulatory domain.
    Shulman A; Zalyapin E; Vyazmensky M; Yifrach O; Barak Z; Chipman DM
    Biochemistry; 2008 Nov; 47(45):11783-92. PubMed ID: 18855421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Hemolytic anemias due to enzymopathies].
    Rosa R
    Rev Prat; 1993 Jun; 43(11):1397-402. PubMed ID: 8235390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric mechanisms in ACT domain containing enzymes involved in amino acid metabolism.
    Liberles JS; Thórólfsson M; Martínez A
    Amino Acids; 2005 Feb; 28(1):1-12. PubMed ID: 15662561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Allosteric enzymes of thermophilic bacteria (author's transl)].
    Saiki T
    Tanpakushitsu Kakusan Koso; 1975 Mar; 20(3):188-93. PubMed ID: 124902
    [No Abstract]   [Full Text] [Related]  

  • 15. Site-directed mutagenesis of a regulatory site of Escherichia coli ADP-glucose pyrophosphorylase: the role of residue 336 in allosteric behavior.
    Meyer CR; Bork JA; Nadler S; Yirsa J; Preiss J
    Arch Biochem Biophys; 1998 May; 353(1):152-9. PubMed ID: 9578610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Red cell enzymopathies as a model of inborn errors of metabolism.
    Miwa S; Kanno H; Hirono A; Fujii H
    Southeast Asian J Trop Med Public Health; 1995; 26 Suppl 1():112-9. PubMed ID: 8629088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-induced conformational transitions in Escherichia coli phosphofructokinase 2: evidence for an allosteric site for MgATP2-.
    Guixé V; Rodríguez PH; Babul J
    Biochemistry; 1998 Sep; 37(38):13269-75. PubMed ID: 9748334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypercooperativity induced by interface mutations in the phosphofructokinase from Escherichia coli.
    Auzat I; Le Bras G; Garel JR
    J Mol Biol; 1995 Feb; 246(2):248-53. PubMed ID: 7869376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of human 5-phosphoribosyl-1-pyrophosphate synthetase by 4-amino-8-(beta-D-ribofuranosylamino)-pyrimido[5,4-d]pyrimidine-5'- monophosphate: evidence for interaction at the ADP allosteric site.
    Fry DW; Becker MA; Switzer RL
    Mol Pharmacol; 1995 Apr; 47(4):810-5. PubMed ID: 7723742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [5-Phosphoribosyl-1-pyrophosphate synthetase overexpression].
    Kamatani N; Totokawa S
    Ryoikibetsu Shokogun Shirizu; 1998; (18 Pt 1):432-4. PubMed ID: 9590092
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.