BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 6285973)

  • 1. Phospholipid transfer between vesicles. Dependence on presence of cytochrome P-450 and phosphatidylcholine-phosphatidylethanolamine ratio.
    Bösterling B; Trudell JR
    Biochim Biophys Acta; 1982 Jul; 689(1):155-60. PubMed ID: 6285973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific interaction of (R)-3-hydroxybutyrate dehydrogenase with membrane phosphatidylcholine as studied by ESR spectroscopy in oriented phospholipid multibilayers: coenzyme binding enhances the interaction with phosphatidylcholine.
    Klein K; Rudy B; McIntyre JO; Fleischer S; Trommer WE
    Biochemistry; 1996 Mar; 35(9):3044-9. PubMed ID: 8608144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphatidylcholine exchange protein catalyzes the net transfer of phosphatidylcholine to model membranes.
    Wirtz KW; Devaux PF; Bienvenue A
    Biochemistry; 1980 Jul; 19(14):3395-9. PubMed ID: 6250569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in vitro ESR study of uncatalyzed rat liver protein-catalyzed spin-labeled phosphatidylcholine exchange.
    Megli FM; Landriscina C; Quagliariello E
    Biochim Biophys Acta; 1981 Jan; 640(1):274-84. PubMed ID: 6260171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-catalyzed phospholipid exchange between gel and liquid-crystalline phospholipid vesicles.
    Kasper AM; Helmkamp GM
    Biochemistry; 1981 Jan; 20(1):146-51. PubMed ID: 7470465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous and protein-catalyzed transfer of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet-activating factor) between phospholipid bilayers.
    Lumb RH; Pool GL; Bubacz DG; Blank ML; Snyder F
    Biochim Biophys Acta; 1983 Feb; 750(2):217-22. PubMed ID: 6860678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of bilayer membrane curvature on activity of phosphatidylcholine exchange protein.
    Machida K; Ohnishi SI
    Biochim Biophys Acta; 1980 Feb; 596(2):201-9. PubMed ID: 6243979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that biosynthesis of phosphatidylethanolamine, phosphatidylcholine, and triacylglycerol occurs on the cytoplasmic side of microsomal vesicles.
    Coleman R; Bell RM
    J Cell Biol; 1978 Jan; 76(1):245-53. PubMed ID: 618895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transbilayer diffusion of phospholipids: dependence on headgroup structure and acyl chain length.
    Homan R; Pownall HJ
    Biochim Biophys Acta; 1988 Feb; 938(2):155-66. PubMed ID: 3342229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rotation of cytochrome P-450. I. Investigations of protein-protein interactions of cytochrome P-450 in phospholipid vesicles and liver microsomes.
    Kawato S; Gut J; Cherry RJ; Winterhalter KH; Richter C
    J Biol Chem; 1982 Jun; 257(12):7023-9. PubMed ID: 7085615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boundary lipids and protein mobility in rhodopsin-phosphatidylcholine vesicles. Effect of lipid phase transitions.
    Davoust J; Bienvenue A; Fellmann P; Devaux PF
    Biochim Biophys Acta; 1980 Feb; 596(1):28-42. PubMed ID: 6243483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreased lipid order induced by microsomal cytochrome P-450 and NADPH-cytochrome P-450 reductase in model membranes: fluorescence and electron spin resonance studies.
    Kunz BC; Rehorek M; Hauser H; Winterhalter KH; Richter C
    Biochemistry; 1985 Jun; 24(12):2889-95. PubMed ID: 2990535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new fluorimetric method to measure protein-catalyzed phospholipid transfer using 1-acyl-2-parinaroylphosphatidylcholine.
    Somerharju P; Brockerhoff H; Wirtz KW
    Biochim Biophys Acta; 1981 Dec; 649(3):521-8. PubMed ID: 7317416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of acceptor membrane phosphatidylcholine on the catalytic activity of bovine liver phosphatidylcholine transfer protein.
    Runquist EA; Helmkamp GM
    Biochim Biophys Acta; 1988 May; 940(1):21-32. PubMed ID: 3284590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-stable temperature control in EPR experiments: thermodynamics of gel-to-liquid phase transition in spin-labeled phospholipid bilayers and bilayer perturbations by spin labels.
    Alaouie AM; Smirnov AI
    J Magn Reson; 2006 Oct; 182(2):229-38. PubMed ID: 16859937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of cholesterol and phosphatidylcholine exchange or transfer between unilamellar vesicles.
    McLean LR; Phillips MC
    Biochemistry; 1981 May; 20(10):2893-900. PubMed ID: 7195733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane properties modulate the activity of a phosphatidylinositol transfer protein from the yeast, Saccharomyces cerevisiae.
    Szolderits G; Hermetter A; Paltauf F; Daum G
    Biochim Biophys Acta; 1989 Nov; 986(2):301-9. PubMed ID: 2686754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid-protein interactions in cytochrome c oxidase. A comparison of covalently attached phospholipid photo-spin-label with label free to diffuse in the bilayer.
    Griffith OH; McMillen DA; Keana JF; Jost PC
    Biochemistry; 1986 Feb; 25(3):574-84. PubMed ID: 3006763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochrome b5 induced flip-flop of phospholipids in sonicated vesicles.
    Greenhut SF; Roseman MA
    Biochemistry; 1985 Feb; 24(5):1252-60. PubMed ID: 4096905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of the membrane-bound D-lactate dehydrogenase of Escherichia coli with phospholipid vesicles and reconstitution of activity using a spin-labeled fatty acid as an electron acceptor: a magnetic resonance and biochemical study.
    Truong HT; Pratt EA; Ho C
    Biochemistry; 1991 Apr; 30(16):3893-8. PubMed ID: 1850292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.