These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 6286141)

  • 41. DNA-protein cooperativity in the assembly and stabilization of mu strand transfer complex. Relevance of DNA phasing and att site cleavage.
    Namgoong SY; Jayaram M; Kim K; Harshey RM
    J Mol Biol; 1994 May; 238(4):514-27. PubMed ID: 8176742
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evidence for a conservative pathway of transposition of bacteriophage Mu.
    Akroyd JE; Symonds N
    Nature; 1983 May 5-11; 303(5912):84-6. PubMed ID: 6302516
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bacterial transposases and retroviral integrases.
    Polard P; Chandler M
    Mol Microbiol; 1995 Jan; 15(1):13-23. PubMed ID: 7752887
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two mutations of phage mu transposase that affect strand transfer or interactions with B protein lie in distinct polypeptide domains.
    Leung PC; Harshey RM
    J Mol Biol; 1991 May; 219(2):189-99. PubMed ID: 1645409
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A novel DNA binding and nuclease activity in domain III of Mu transposase: evidence for a catalytic region involved in donor cleavage.
    Wu Z; Chaconas G
    EMBO J; 1995 Aug; 14(15):3835-43. PubMed ID: 7641701
    [TBL] [Abstract][Full Text] [Related]  

  • 46. DNA gyrase requirements distinguish the alternate pathways of Mu transposition.
    Sokolsky TD; Baker TA
    Mol Microbiol; 2003 Jan; 47(2):397-409. PubMed ID: 12519191
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mutations in domain III alpha of the Mu transposase: evidence suggesting an active site component which interacts with the Mu-host junction.
    Naigamwalla DZ; Coros CJ; Wu Z; Chaconas G
    J Mol Biol; 1998 Sep; 282(2):265-74. PubMed ID: 9735286
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Conformational isomerization in phage Mu transpososome assembly: effects of the transpositional enhancer and of MuB.
    Mizuuchi M; Mizuuchi K
    EMBO J; 2001 Dec; 20(23):6927-35. PubMed ID: 11726528
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The bacteriophage Mu transposase protein can form high-affinity protein-DNA complexes with the ends of transposable elements of the Tn 3 family.
    Cameron RK; Jarjour AM; Tolias PP; DuBow MS
    FEBS Lett; 1988 Mar; 229(2):283-8. PubMed ID: 2831096
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Organization and dynamics of the Mu transpososome: recombination by communication between two active sites.
    Williams TL; Jackson EL; Carritte A; Baker TA
    Genes Dev; 1999 Oct; 13(20):2725-37. PubMed ID: 10541558
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The overproduction and characterization of the bacteriophage Mu regulatory DNA-binding protein ner.
    Tolias PP; Dubow MS
    Virology; 1986 Jan; 148(2):298-311. PubMed ID: 2934891
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The wing of the enhancer-binding domain of Mu phage transposase is flexible and is essential for efficient transposition.
    Clubb RT; Mizuuchi M; Huth JR; Omichinski JG; Savilahti H; Mizuuchi K; Clore GM; Gronenborn AM
    Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1146-50. PubMed ID: 8577730
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Integration of bacteriophage Mu at host chromosomal replication forks during lytic development.
    Fitts RA; Taylor AL
    Proc Natl Acad Sci U S A; 1980 May; 77(5):2801-5. PubMed ID: 6446718
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of ner protein in bacteriophage Mu transposition.
    Goosen N; van de Putte P
    J Bacteriol; 1986 Aug; 167(2):503-7. PubMed ID: 3015876
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interaction of distinct domains in Mu transposase with Mu DNA ends and an internal transpositional enhancer.
    Leung PC; Teplow DB; Harshey RM
    Nature; 1989 Apr; 338(6217):656-8. PubMed ID: 2539564
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vitro transposition of bacteriophage Mu: a biochemical approach to a novel replication reaction.
    Mizuuchi K
    Cell; 1983 Dec; 35(3 Pt 2):785-94. PubMed ID: 6317201
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Involvement of heat shock proteins in bacteriophage Mu development.
    Pato M; Banerjee M; Desmet L; Toussaint A
    J Bacteriol; 1987 Dec; 169(12):5504-9. PubMed ID: 2960662
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Mu transpositional enhancer can function in trans: requirement of the enhancer for synapsis but not strand cleavage.
    Surette MG; Chaconas G
    Cell; 1992 Mar; 68(6):1101-8. PubMed ID: 1312394
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Integration of bacteriophage mu DNA.
    Ljungquist E; Khatoon H; DuBow M; Ambrosio L; De Bruijn F; Bukhari AI
    Cold Spring Harb Symp Quant Biol; 1979; 43 Pt 2():1151-8. PubMed ID: 158469
    [No Abstract]   [Full Text] [Related]  

  • 60. Assembly of the active form of the transposase-Mu DNA complex: a critical control point in Mu transposition.
    Mizuuchi M; Baker TA; Mizuuchi K
    Cell; 1992 Jul; 70(2):303-11. PubMed ID: 1322248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.