These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 6286146)

  • 1. A topological model for transcription based on unwinding angle analysis of E. coli RNA polymerase binary, initiation and ternary complexes.
    Gamper HB; Hearst JE
    Cell; 1982 May; 29(1):81-90. PubMed ID: 6286146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiochemical studies on interactions between DNA and RNA polymerase. Unwinding of the DNA helix by Escherichia coli RNA polymerase.
    Wang JC; Jacobsen JH; Saucier JM
    Nucleic Acids Res; 1977; 4(5):1225-41. PubMed ID: 331252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA chain elongation by Escherichia coli RNA polymerase. Factors affecting the stability of elongating ternary complexes.
    Arndt KM; Chamberlin MJ
    J Mol Biol; 1990 May; 213(1):79-108. PubMed ID: 1692594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elongation properties of vaccinia virus RNA polymerase: pausing, slippage, 3' end addition, and termination site choice.
    Deng L; Shuman S
    Biochemistry; 1997 Dec; 36(50):15892-9. PubMed ID: 9398322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unwinding of the DNA helix in simian virus 40 chromosome templates by RNA polymerase.
    Beard P; Hughes M; Nyfeler K; Hoey M
    Eur J Biochem; 1984 Aug; 143(1):39-45. PubMed ID: 6088229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Escherichia coli RNA polymerase terminates transcription efficiently at rho-independent terminators on single-stranded DNA templates.
    Uptain SM; Chamberlin MJ
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13548-53. PubMed ID: 9391063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural analysis of ternary complexes of Escherichia coli RNA polymerase. Individual complexes halted along different transcription units have distinct and unexpected biochemical properties.
    Krummel B; Chamberlin MJ
    J Mol Biol; 1992 May; 225(2):221-37. PubMed ID: 1593618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of RNA and DNA chains in paused transcription complexes containing Escherichia coli RNA polymerase.
    Lee DN; Landick R
    J Mol Biol; 1992 Dec; 228(3):759-77. PubMed ID: 1281887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA chain initiation by Escherichia coli RNA polymerase. Structural transitions of the enzyme in early ternary complexes.
    Krummel B; Chamberlin MJ
    Biochemistry; 1989 Sep; 28(19):7829-42. PubMed ID: 2482070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Priming of superhelical SV40 DNA by Escherichia coli RNA polymerase for in vitro DNA synthesis.
    Champoux JJ; McConaughy BL
    Biochemistry; 1975 Jan; 14(2):307-16. PubMed ID: 164202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A direct real-time spectroscopic investigation of the mechanism of open complex formation by T7 RNA polymerase.
    Sastry SS; Ross BM
    Biochemistry; 1996 Dec; 35(49):15715-25. PubMed ID: 8961934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription of BK virus DNA by Escherichia coli RNA polymerase: size and sequence analysis of RNA.
    Meneguzzi G; Milanesi G
    J Virol; 1978 Mar; 25(3):940-3. PubMed ID: 205683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA polymerase II allows unwinding and rewinding of the DNA and thus maintains a constant length of the transcription bubble.
    Choder M; Aloni Y
    J Biol Chem; 1988 Sep; 263(26):12994-3002. PubMed ID: 2843504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the interaction of T7 RNA polymerase with a DNA template containing a site-specifically placed psoralen cross-link. II. Stability and some properties of elongation complexes.
    Sastry SS; Hearst JE
    J Mol Biol; 1991 Oct; 221(4):1111-25. PubMed ID: 1942045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular interaction between simian virus 40 DNA and Escherichia coli RNA polymerase. Mapping of the initiation sites on supercoiled and linear DNA.
    Lavialle C; Reuveni Y; Thoren M; Salzman NP
    J Biol Chem; 1982 Feb; 257(3):1549-57. PubMed ID: 6276391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of T7 RNA polymerase initiation by triple-helical DNA complexes: a model for artificial gene repression.
    Maher LJ
    Biochemistry; 1992 Aug; 31(33):7587-94. PubMed ID: 1510945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter.
    Pribnow D
    Proc Natl Acad Sci U S A; 1975 Mar; 72(3):784-8. PubMed ID: 1093168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nucleotide sequence preceding an RNA polymerase initiation site on SV40 DNA. Part 1. The sequence of the late strand transcript.
    Zain BS; Weissman SM; Dhar R; Pan J
    Nucleic Acids Res; 1974 Apr; 1(4):577-94. PubMed ID: 10793741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of Escherichia coli RNA polymerase with DNA in an elongation complex arrested at a specific psoralen crosslink site.
    Shi YB; Gamper H; Van Houten B; Hearst JE
    J Mol Biol; 1988 Jan; 199(2):277-93. PubMed ID: 3280804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural analysis of ternary complexes of Escherichia coli RNA polymerase. Deoxyribonuclease I footprinting of defined complexes.
    Krummel B; Chamberlin MJ
    J Mol Biol; 1992 May; 225(2):239-50. PubMed ID: 1593619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.