BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6286383)

  • 1. Influence of DL-ethionine on the NAD content and on the activity of the poly(ADPR)synthetase in the rat liver.
    Kröger H; Grätz R; Grahn H
    Int J Biochem; 1982; 14(7):557-60. PubMed ID: 6286383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of D-galactosamine upon the NAD-metabolism in rat liver.
    Kröger H; Grätz R; Grahn H
    Int J Biochem; 1983; 15(9):1131-6. PubMed ID: 6311640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of ethanol upon the introduction of tyrosine aminotransferase in liver, upon the NAD content in liver and brain, and upon the activity of glutamate oxalate aminotransferase and glutamate pyruvate aminotransferase in the serum of rats.
    Kröger H; Grätz R; Grahn H
    Gen Pharmacol; 1985; 16(1):31-5. PubMed ID: 2858429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [ADP-ribosylation of histones of the chicken liver nucleus at different rates of glycohydrolase hydrolysis of NAD].
    Khalmuradov AG; Muliavko NA
    Biokhimiia; 1984 Jan; 49(1):20-4. PubMed ID: 6322868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of oxypangam upon the induction of tyrosine aminotransferase, the NAD content and the ADPR transferase activity in several organs of the rat.
    Kröger H; Grätz R; Dietrich A; Grahn H
    Gen Pharmacol; 1987; 18(1):37-9. PubMed ID: 2881834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that poly(ADP-ribose) polymerase is involved in the loss of NAD from cultured rat liver cells.
    Paine AJ; Allen CM; Durkacz BW; Shall S
    Biochem J; 1982 Feb; 202(2):551-3. PubMed ID: 6284133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retarded decline in poly-ADPR content and poly-ADPR synthetase activity in chicken dystrophic muscle.
    Yoshikawa A; Masaki T
    FEBS Lett; 1985 Jan; 180(1):1-4. PubMed ID: 2981711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theophylline reduces poly (ADP-ribose) synthetase from chick embryo liver nuclei.
    Kitamura A; Tanigawa Y; Okamoto S; Miyake Y; Shimoyama M
    Biochim Biophys Acta; 1981 Sep; 677(1):63-8. PubMed ID: 6271249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of the steady-state concentrations of the nicotinamide nucleotides in rat liver.
    Clark JB; Pinder S
    Biochem J; 1969 Sep; 114(2):321-30. PubMed ID: 4390211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of polyamines on purified poly(ADP-ribose) synthetase from rat liver nuclei.
    Kawamura M; Tanigawa Y; Kitamura A; Miyake Y; Shimoyama M
    Biochim Biophys Acta; 1981 Jan; 652(1):121-8. PubMed ID: 6260184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of catabolism in controlling tissue concentrations of nicotinamide nucleotide coenzymes.
    McCreanor GM; Bender DA
    Biochim Biophys Acta; 1983 Sep; 759(3):222-8. PubMed ID: 6309251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disparity in the effects of two N-methyl nicotinamides on poly(ADP-ribose) synthetase and macromolecular synthesis in hepatomas.
    Lea MA; Hu JJ; Grasso SV
    Cancer Biochem Biophys; 1985 Jun; 8(1):1-7. PubMed ID: 2992758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coincidence of subnuclear distribution of poly(ADP-ribose) synthetase and DNA polymerase beta in nuclei of normal and regenerating liver.
    Kirsten E; Minaga T; Kun E
    FEBS Lett; 1982 Mar; 139(1):117-20. PubMed ID: 6281060
    [No Abstract]   [Full Text] [Related]  

  • 14. DNA strand breaks and poly(ADP-ribose) synthetase activation in pancreatic islets--a new aspect to development of insulin-dependent diabetes and pancreatic B-cell tumors.
    Okamoto H; Yamamoto H
    Princess Takamatsu Symp; 1983; 13():297-308. PubMed ID: 6317640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular oxidized nicotinamide--adenine dinucleotide content and poly(adenosine disphosphate ribose) synthetase activity in serum-stimulated fibroblasts [proceedings].
    Furneaux HM; Pearson CK
    Biochem Soc Trans; 1979 Aug; 7(4):697-9. PubMed ID: 225225
    [No Abstract]   [Full Text] [Related]  

  • 16. Adenosine diphosphate ribosylation of histone and nonhistone chromosomal proteins with oxidized nicotinamide adenine dinucleotide and 2'-deoxynicotinamide adenine dinucleotide using nuclei isolated from rat liver and HeLa cells.
    Lichtenwalner DM; Suhadolnik RJ
    Biochemistry; 1979 Aug; 18(17):3749-55. PubMed ID: 224917
    [No Abstract]   [Full Text] [Related]  

  • 17. NAD metabolism and induction of tyrosine aminotransferase in the rat.
    Kröger H; Grätz R; Grahn H
    Int J Biochem; 1985; 17(2):161-5. PubMed ID: 2861122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of ethanol, nicotinamide, orotic acid and caffeine upon the induction of tyrosine aminotransferase, the NAD content and the ADPR transferase activity in rat liver.
    Kröger H; Grätz R; Grahn H
    Gen Pharmacol; 1986; 17(1):43-8. PubMed ID: 2868968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(ADP-ribose) synthetase.
    Ueda K; Zhang J; Hayaishi O
    Methods Enzymol; 1984; 106():500-4. PubMed ID: 6092836
    [No Abstract]   [Full Text] [Related]  

  • 20. NAD+ analogs substituted in the purine base as substrates for poly(ADP-ribosyl) transferase.
    Oei SL; Griesenbeck J; Buchlow G; Jorcke D; Mayer-Kuckuk P; Wons T; Ziegler M
    FEBS Lett; 1996 Nov; 397(1):17-21. PubMed ID: 8941705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.