These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 6286613)

  • 1. Spectra of intermediates in oxidation and reduction of cytochrome c oxidase.
    Reichardt JK; Gibson QH
    J Biol Chem; 1982 Aug; 257(16):9268-70. PubMed ID: 6286613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turnover of cytochrome c oxidase from Paracoccus denitrificans.
    Reichardt JK; Gibson QH
    J Biol Chem; 1983 Feb; 258(3):1504-7. PubMed ID: 6296100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox-cycled oxidase. One of the reaction products of reduced cytochrome c, cytochrome c oxidase, and dioxygen.
    Young LJ; Palmer G
    J Biol Chem; 1986 Oct; 261(28):13031-3. PubMed ID: 3020020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of electron transfer by the electrochemical potential gradient in cytochrome-c oxidase reconstituted into phospholipid vesicles.
    Sarti P; Malatesta F; Antonini G; Vallone B; Brunori M
    J Biol Chem; 1990 Apr; 265(10):5554-60. PubMed ID: 2156821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction of oxygen with cytochrome c oxidase from Paracoccus denitrificans.
    Ludwig B; Gibson QH
    J Biol Chem; 1981 Oct; 256(19):10092-8. PubMed ID: 6268625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The rate of internal heme-heme electron transfer in cytochrome C oxidase.
    Namslauer A; Brändén M; Brzezinski P
    Biochemistry; 2002 Aug; 41(33):10369-74. PubMed ID: 12173922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The electronic state of heme in cytochrome oxidase II. Oxidation-reduction potential interactions and heme iron spin state behavior observed in reductive titrations.
    Babcock GT; Vickery LE; Palmer G
    J Biol Chem; 1978 Apr; 253(7):2400-11. PubMed ID: 204649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation by reduction of the resting form of cytochrome c oxidase: tests of different models and evidence for the involvement of CuB.
    Wrigglesworth JM; Elsden J; Chapman A; Van der Water N; Grahn MF
    Biochim Biophys Acta; 1988 Dec; 936(3):452-64. PubMed ID: 2848581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geminate carbon monoxide rebinding to a c-type haem.
    Silkstone G; Jasaitis A; Vos MH; Wilson MT
    Dalton Trans; 2005 Nov; (21):3489-94. PubMed ID: 16234930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation process of bovine heart ubiquinol-cytochrome c reductase as studied by stopped-flow rapid-scan spectrophotometry and simulations based on the mechanistic Q cycle model.
    Orii Y; Miki T
    J Biol Chem; 1997 Jul; 272(28):17594-604. PubMed ID: 9211907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internal electron transfer in Cu-heme oxidases. Thermodynamic or kinetic control?
    Brunori M; Giuffrè A; D'Itri E; Sarti P
    J Biol Chem; 1997 Aug; 272(32):19870-4. PubMed ID: 9242650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge translocation coupled to electron injection into oxidized cytochrome c oxidase from Paracoccus denitrificans.
    Verkhovsky MI; Tuukkanen A; Backgren C; Puustinen A; Wikström M
    Biochemistry; 2001 Jun; 40(24):7077-83. PubMed ID: 11401552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase.
    Okuno D; Iwase T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T
    J Am Chem Soc; 2003 Jun; 125(24):7209-18. PubMed ID: 12797794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic studies on cytochrome c oxidase by combined epr and reflectance spectroscopy after rapid freezing.
    Beinert H; Hansen RE; Hartzell CR
    Biochim Biophys Acta; 1976 Feb; 423(2):339-55. PubMed ID: 2321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Individual heme a and heme a
    Diuba AV; Vygodina TV; Azarkina NV; Arutyunyan AM; Soulimane T; Vos MH; Konstantinov AA
    Biochim Biophys Acta Bioenerg; 2023 Apr; 1864(2):148937. PubMed ID: 36403793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical and ultraviolet/visible/infrared spectroscopic analysis of heme a and a3 redox reactions in the cytochrome c oxidase from Paracoccus denitrificans: separation of heme a and a3 contributions and assignment of vibrational modes.
    Hellwig P; Grzybek S; Behr J; Ludwig B; Michel H; Mäntele W
    Biochemistry; 1999 Feb; 38(6):1685-94. PubMed ID: 10026246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of three preparations of cytochrome c oxidase. Optical absorbance spectra, EPR spectra and reaction towards ligands.
    Lodder AL; van Gelder BF
    Biochim Biophys Acta; 1994 Jun; 1186(1-2):67-74. PubMed ID: 8011669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and ligand binding evidence for two heme A-based terminal oxidases in plasma membranes from Bacillus subtilis.
    Hill BC; Vo L; Albanese J
    Arch Biochem Biophys; 1993 Feb; 301(1):129-37. PubMed ID: 8382904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of cytochrome oxidase activity. A transient spectroscopy study.
    Antonini G; Malatesta F; Sarti P; Brunori M
    J Biol Chem; 1991 Jul; 266(20):13193-202. PubMed ID: 1649183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon monoxide-driven reduction of ferric heme and heme proteins.
    Bickar D; Bonaventura C; Bonaventura J
    J Biol Chem; 1984 Sep; 259(17):10777-83. PubMed ID: 6088517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.