These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 6286674)

  • 1. Lateral diffusion of ubiquinone during electron transfer in phospholipid- and ubiquinone-enriched mitochondrial membranes.
    Schneider H; Lemasters JJ; Hackenbrock CR
    J Biol Chem; 1982 Sep; 257(18):10789-93. PubMed ID: 6286674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phospholipid-enriched bacterial chromatophores. A system suited to investigate the ubiquinone-mediated interactions of protein complexes in photosynthetic oxidoreduction processes.
    Casadio R; Venturoli G; Di Gioia A; Castellani P; Leonardi L; Melandri BA
    J Biol Chem; 1984 Jul; 259(14):9149-57. PubMed ID: 6378907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is ubiquinone diffusion rate-limiting for electron transfer?
    Lenaz G; Fato R
    J Bioenerg Biomembr; 1986 Oct; 18(5):369-401. PubMed ID: 3021715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mobility in the mitochondrial electron transport chain.
    Hochman J; Ferguson-Miller S; Schindler M
    Biochemistry; 1985 May; 24(10):2509-16. PubMed ID: 2990530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liposome-mitochondrial inner membrane fusion. Lateral diffusion of integral electron transfer components.
    Schneider H; Lemasters JJ; Höchli M; Hackenbrock CR
    J Biol Chem; 1980 Apr; 255(8):3748-56. PubMed ID: 6245090
    [No Abstract]   [Full Text] [Related]  

  • 6. Relationships between bilayer lipid, motional freedom of oxidoreductase components, and electron transfer in the mitochondrial inner membrane.
    Hackenbrock CR; Schneider H; Lemasters JJ; Höchli M
    Adv Exp Med Biol; 1980; 132():245-63. PubMed ID: 7424710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The indispensability of phospholipid and ubiquinone in mitochondrial electron transfer from succinate to cytochrome c.
    Yu L; Yu CA; King TE
    J Biol Chem; 1978 Apr; 253(8):2657-63. PubMed ID: 204658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between the density distribution of intramembrane particles and electron transfer in the mitochondrial inner membrane as revealed by cholesterol incorporation.
    Schneider H; Höchli M; Hackenbrock CR
    J Cell Biol; 1982 Aug; 94(2):387-93. PubMed ID: 7107704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral diffusion as a rate-limiting step in ubiquinone-mediated mitochondrial electron transport.
    Chazotte B; Hackenbrock CR
    J Biol Chem; 1989 Mar; 264(9):4978-85. PubMed ID: 2925679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin-label electron paramagnetic resonance and differential scanning calorimetry studies of the interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c reductases.
    Gwak SH; Yu L; Yu CA
    Biochemistry; 1986 Nov; 25(23):7675-82. PubMed ID: 3026458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of substituents of the benzoquinone ring on electron-transfer activities of ubiquinone derivatives.
    Gu LQ; Yu L; Yu CA
    Biochim Biophys Acta; 1990 Feb; 1015(3):482-92. PubMed ID: 2154255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucagon treatment of rats activates the respiratory chain of liver mitochondria at more than one site.
    Halestrap AP
    Biochim Biophys Acta; 1987 Feb; 927(2):280-90. PubMed ID: 3028493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron transport between cytochrome c and alpha tocopherol.
    Maguire JJ; Kagan VE; Packer L
    Biochem Biophys Res Commun; 1992 Oct; 188(1):190-7. PubMed ID: 1329744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusion of liposomes with mitochondrial inner membranes.
    Schneider H; Lemasters JJ; Höchli M; Hackenbrock CR
    Proc Natl Acad Sci U S A; 1980 Jan; 77(1):442-6. PubMed ID: 6928637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The small molecular mass ubiquinone-binding protein (QPc-9.5 kDa) in mitochondrial ubiquinol-cytochrome c reductase: isolation, ubiquinone-binding domain, and immunoinhibition.
    Usui S; Yu L; Yu CA
    Biochemistry; 1990 May; 29(19):4618-26. PubMed ID: 2164842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The multicollisional, obstructed, long-range diffusional nature of mitochondrial electron transport.
    Chazotte B; Hackenbrock CR
    J Biol Chem; 1988 Oct; 263(28):14359-67. PubMed ID: 3170548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunochemical study of subunit VI (Mr 13,400) of mitochondrial ubiquinol-cytochrome c reductase.
    Usui S; Yu L; Harmon J; Yu CA
    Arch Biochem Biophys; 1991 Aug; 289(1):109-17. PubMed ID: 1654841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between ubiquinones and vitamins in membranes and cells.
    Constantinescu A; Maguire JJ; Packer L
    Mol Aspects Med; 1994; 15 Suppl():s57-65. PubMed ID: 7752845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies of protein-phospholipid interaction in isolated mitochondrial ubiquinone-cytochrome c reductase.
    Gwak SH; Yu L; Yu CA
    Biochim Biophys Acta; 1985 Sep; 809(2):187-98. PubMed ID: 2994720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of partition and lateral diffusion coefficients of ubiquinones by fluorescence quenching of n-(9-anthroyloxy)stearic acids in phospholipid vesicles and mitochondrial membranes.
    Fato R; Battino M; Degli Esposti M; Parenti Castelli G; Lenaz G
    Biochemistry; 1986 Jun; 25(11):3378-90. PubMed ID: 3730366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.