These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 6286948)

  • 1. Slowing effects of dopamine and calcium-channel blockers on frequency of sodium spikes in rat pars intermedia cells.
    Douglas WW; Taraskevich PS
    J Physiol; 1982 May; 326():201-11. PubMed ID: 6286948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indications from Mn-quenching of Fura-2 fluorescence in melanotrophs that dopamine and baclofen close Ca channels that are spontaneously open but not those opened by high [K+]O; and that Cd preferentially blocks the latter.
    Shibuya I; Douglas WW
    Cell Calcium; 1993 Jan; 14(1):33-44. PubMed ID: 8382563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action potentials in gland cells of rat pituitary pars intermedia: inhibition by dopamine, an inhibitor of MSH secretion.
    Douglas WW; Taraskevich PS
    J Physiol; 1978 Dec; 285():171-84. PubMed ID: 745066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings isolated from rat brain.
    Drapeau P; Nachshen DA
    J Physiol; 1984 Mar; 348():493-510. PubMed ID: 6325673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selectivity of calcium channels in rat uterine smooth muscle: interactions between sodium, calcium and barium ions.
    Jmari K; Mironneau C; Mironneau J
    J Physiol; 1987 Mar; 384():247-61. PubMed ID: 2443660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium component to action potentials in rat pars intermedia cells.
    Douglas WW; Taraskevich PS
    J Physiol; 1980 Dec; 309():623-30. PubMed ID: 7252881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of calcium channels in rat clonal pituitary cells with patch electrode voltage clamp.
    Hagiwara S; Ohmori H
    J Physiol; 1982 Oct; 331():231-52. PubMed ID: 6296367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium spike and calcium-dependent potassium conductance in mechanosensory neurons of the lamprey.
    Leonard JP; Wickelgren WO
    J Neurophysiol; 1985 Jan; 53(1):171-82. PubMed ID: 2579216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inward rectification and low threshold calcium conductance in rat cerebellar Purkinje cells. An in vitro study.
    Crepel F; Penit-Soria J
    J Physiol; 1986 Mar; 372():1-23. PubMed ID: 2425081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous cytosolic calcium pulses in Xenopus melanotrophs are due to calcium influx during phasic increases in the calcium permeability of the cell membrane.
    Shibuya I; Douglas WW
    Endocrinology; 1993 May; 132(5):2176-83. PubMed ID: 8477662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kv3 K+ channels enable burst output in rat cerebellar Purkinje cells.
    McKay BE; Turner RW
    Eur J Neurosci; 2004 Aug; 20(3):729-39. PubMed ID: 15255983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catecholamine secretion in a rat pheochromocytoma cell line: two pathways for calcium entry.
    Ritchie AK
    J Physiol; 1979 Jan; 286():541-61. PubMed ID: 571467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium antagonistic drugs differ in ability to block the slow Na+ channels of young embryonic chick hearts.
    Kojima M; Sperelakis N
    Eur J Pharmacol; 1983 Oct; 94(1-2):9-18. PubMed ID: 6317401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic modulation by dopamine of calcium currents in rat pars intermedia.
    Williams PJ; MacVicar BA; Pittman QJ
    J Neurosci; 1990 Mar; 10(3):757-63. PubMed ID: 2181078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface potential reflected in both gating and permeation mechanisms of sodium and calcium channels of the tunicate egg cell membrane.
    Ohmori H; Yoshii M
    J Physiol; 1977 May; 267(2):429-63. PubMed ID: 17734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones.
    Nedergaard S; Flatman JA; Engberg I
    J Physiol; 1993 Jul; 466():727-47. PubMed ID: 8410714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-methyl aspartate activates voltage-dependent calcium conductance in rat hippocampal pyramidal cells.
    Dingledine R
    J Physiol; 1983 Oct; 343():385-405. PubMed ID: 6139475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium channels in rat melanotrophs are permeable to manganese, cobalt, cadmium, and lanthanum, but not to nickel: evidence provided by fluorescence changes in fura-2-loaded cells.
    Shibuya I; Douglas WW
    Endocrinology; 1992 Oct; 131(4):1936-41. PubMed ID: 1327724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic basis of the resting membrane potential and action potential in the pharyngeal muscle of Caenorhabditis elegans.
    Franks CJ; Pemberton D; Vinogradova I; Cook A; Walker RJ; Holden-Dye L
    J Neurophysiol; 2002 Feb; 87(2):954-61. PubMed ID: 11826060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three types of calcium-dependent channel in rat lacrimal glands.
    Marty A; Tan YP; Trautmann A
    J Physiol; 1984 Dec; 357():293-325. PubMed ID: 6096532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.