These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 6286954)

  • 41. [Lipid layer distortion as a possible cause of active ion transport through biological membranes].
    Namiot VA; Merkulova SP
    Biofizika; 1980; 25(3):543-7. PubMed ID: 6249401
    [No Abstract]   [Full Text] [Related]  

  • 42. Phospholipid flip-flop and the distribution of surface charges in excitable membranes.
    McLaughlin S; Harary H
    Biophys J; 1974 Mar; 14(3):200-8. PubMed ID: 4823459
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aqueous ion channels.
    Edmonds DT
    Biochem Soc Symp; 1981; (46):91-101. PubMed ID: 6279101
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Theoretical analysis of the current-dependent blockage of the ion channels of excitable membranes].
    Teslenko VI
    Dokl Akad Nauk SSSR; 1984; 279(6):1500-3. PubMed ID: 6098434
    [No Abstract]   [Full Text] [Related]  

  • 45. Interpreting power spectra from nonstationary membrane current fluctuations.
    Sigworth FJ
    Biophys J; 1981 Aug; 35(2):289-300. PubMed ID: 6268213
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Analysis of the excitable properties of an artificial membrane containing amphotericin B in the presence of cationic blockers].
    Markevich NN
    Biofizika; 1981; 26(2):260-4. PubMed ID: 6266505
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinetic theory model for ion movement through biological membranes. II. Interionic selectivity.
    Mackey MC
    Biophys J; 1971 Jan; 11(1):91-7. PubMed ID: 5539002
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrostatic modeling of ion pores. Energy barriers and electric field profiles.
    Jordan PC
    Biophys J; 1982 Aug; 39(2):157-64. PubMed ID: 6288132
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Theory of electroporation of planar bilayer membranes: predictions of the aqueous area, change in capacitance, and pore-pore separation.
    Freeman SA; Wang MA; Weaver JC
    Biophys J; 1994 Jul; 67(1):42-56. PubMed ID: 7919016
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of adsorbed charges and dipoles on the gating charges in excitable membranes.
    Lundström I
    FEBS Lett; 1977 Nov; 83(1):7-10. PubMed ID: 923823
    [No Abstract]   [Full Text] [Related]  

  • 51. Modification of ion transport in lipid bilayer membranes in the presence of 2,4-dichlorophenoxyacetic acid. I. Enhancement of cationic conductance and changes of the kinetics of nonactin-mediated transport of potassium.
    Smejtek P; Paulis-Illangasekare M
    Biophys J; 1979 Jun; 26(3):441-66. PubMed ID: 263687
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A review of membrane structure with perspectives on certain transmembrane channels.
    Robertson JD
    Adv Neurol; 1981; 31():419-77. PubMed ID: 6275673
    [No Abstract]   [Full Text] [Related]  

  • 53. How pore mouth charge distributions alter the permeability of transmembrane ionic channels.
    Jordan PC
    Biophys J; 1987 Feb; 51(2):297-311. PubMed ID: 2435331
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calculation of deformation energies and conformations in lipid membranes containing gramicidin channels.
    Helfrich P; Jakobsson E
    Biophys J; 1990 May; 57(5):1075-84. PubMed ID: 1692748
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Flux, coupling, and selectivity in ionic channels of one conformation.
    Chen DP; Eisenberg RS
    Biophys J; 1993 Aug; 65(2):727-46. PubMed ID: 7693003
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modifiers of membrane dipole potentials as tools for investigating ion channel formation and functioning.
    Ostroumova OS; Efimova SS; Malev VV
    Int Rev Cell Mol Biol; 2015; 315():245-97. PubMed ID: 25708465
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Comparison of discrete models of charge transfer in thin membranes. II. Nonstationary conditions, small polarizing voltages].
    Malev VV; Aĭt'ian SKh; Markin VS; Tatulian SA
    Biofizika; 1976; 21(4):643-7. PubMed ID: 1009146
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of pore structure on energy barriers and applied voltage profiles. II. Unsymmetrical channels.
    Jordan PC
    Biophys J; 1984 Jun; 45(6):1101-7. PubMed ID: 6331540
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interactions of voltage-sensing dyes with membranes. I. Steady-state permeability behaviors induced by cyanine dyes.
    Krasne S
    Biophys J; 1980 Jun; 30(3):415-39. PubMed ID: 7260282
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A three-barrier model for the hemocyanin channel.
    Cecchi X; Alvarez O; Latorre R
    J Gen Physiol; 1981 Dec; 78(6):657-81. PubMed ID: 6278051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.