These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 6286954)
61. Electrical noise and membrane transport processes. Siebenga E Arch Int Physiol Biochim; 1974; 82(2):313-4. PubMed ID: 4135865 [No Abstract] [Full Text] [Related]
62. [Evaluation of the effect of water on the kinetics of transmembrane transport of ions along narrow ionic channels]. Markevich NI Biofizika; 1981; 26(3):532-3. PubMed ID: 6266513 [TBL] [Abstract][Full Text] [Related]
63. Effect of pore structure on energy barriers and applied voltage profiles. I. Symmetrical channels. Jordan PC Biophys J; 1984 Jun; 45(6):1091-100. PubMed ID: 6331539 [TBL] [Abstract][Full Text] [Related]
64. Surface charging by large multivalent molecules. Extending the standard Gouy-Chapman treatment. Stankowski S Biophys J; 1991 Aug; 60(2):341-51. PubMed ID: 1912277 [TBL] [Abstract][Full Text] [Related]
65. The influence of hydrophobic ions and dipolar molecules on the electrostatic barrier in biomembranes. Kleijn WB; Bruner LJ J Theor Biol; 1983 Jan; 100(1):139-52. PubMed ID: 6834858 [TBL] [Abstract][Full Text] [Related]
67. Ionic channels in excitable membranes. Current problems and biophysical approaches. Hille B Biophys J; 1978 May; 22(2):283-94. PubMed ID: 656545 [TBL] [Abstract][Full Text] [Related]
68. Asymmetric charge distributions in planar bilayer systems. McQuarrie DA; Mulás P Biophys J; 1977 Feb; 17(2):103-9. PubMed ID: 836930 [TBL] [Abstract][Full Text] [Related]
69. Ionic transport in lipid bilayer membranes. Bordi F; Cametti C; Naglieri A Biophys J; 1998 Mar; 74(3):1358-70. PubMed ID: 9512032 [TBL] [Abstract][Full Text] [Related]
70. An experimental test of the discreteness-of-charge effect in positive and negative lipid bilayers. Winiski AP; McLaughlin AC; McDaniel RV; Eisenberg M; McLaughlin S Biochemistry; 1986 Dec; 25(25):8206-14. PubMed ID: 3814579 [TBL] [Abstract][Full Text] [Related]
71. Field-induced reorganization of the neural membrane lipid bilayer: a proposed role in the regulation of ion-channel dynamics. Price H; Wallace R Biosystems; 2003 Jan; 68(1):67-77. PubMed ID: 12543523 [TBL] [Abstract][Full Text] [Related]
73. Electrostatics of phosphoinositide bilayer membranes. Theoretical and experimental results. Langner M; Cafiso D; Marcelja S; McLaughlin S Biophys J; 1990 Feb; 57(2):335-49. PubMed ID: 2156577 [TBL] [Abstract][Full Text] [Related]
74. A model for membrane potential and intracellular ion distribution. Khitrin AK; Khitrin KA; Model MA Chem Phys Lipids; 2014 Dec; 184():76-81. PubMed ID: 25450557 [TBL] [Abstract][Full Text] [Related]
75. The hydrophobic adsorption of charged molecules to bilayer membranes: a test of the applicability of the stern equation. McLaughlin S; Harary H Biochemistry; 1976 May; 15(9):1941-8. PubMed ID: 946770 [TBL] [Abstract][Full Text] [Related]
76. Ionic conditions and membrane behavior. Lux HD Adv Neurol; 1980; 27():63-83. PubMed ID: 6246769 [No Abstract] [Full Text] [Related]
77. Far-field analysis of coupled bulk and boundary layer diffusion toward an ion channel entrance. Schumaker MF; Kentler CJ Biophys J; 1998 May; 74(5):2235-48. PubMed ID: 9591651 [TBL] [Abstract][Full Text] [Related]
78. [Structure of the double electric layer at membrane/aqueous solution interfaces in the presence of tetrapentylammonium cations]. Boguslavskiĭ LI; Krylov VS; Shchipumov IuA Biofizika; 1976; 21(2):266-70. PubMed ID: 1268274 [TBL] [Abstract][Full Text] [Related]
79. Electrostatic calculations for an ion channel. I. Energy and potential profiles and interactions between ions. Levitt DG Biophys J; 1978 May; 22(2):209-19. PubMed ID: 656542 [TBL] [Abstract][Full Text] [Related]