BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 6287124)

  • 1. Age-linked changes in the activity of enzymes of the tricarboxylate cycle and lipid oxidation, and of carnitine content, in muscles of the rat.
    Hansford RG; Castro F
    Mech Ageing Dev; 1982 Jun; 19(2):191-200. PubMed ID: 6287124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of endurance-training on the maximum activities of hexokinase, 6-phosphofructokinase, citrate synthase, and oxoglutarate dehydrogenase in red and white muscles of the rat.
    Soar PK; Davies CT; Fentem PH; Newsholme EA
    Biosci Rep; 1983 Sep; 3(9):831-5. PubMed ID: 6227345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Changes in the activity of various enzymes of Krebs cycle under the effect of peroxidized unsaturated fatty acids].
    Mkhitarian LV; Gevorkian DN; Mkhitarian VG
    Zh Eksp Klin Med; 1976; 16(1):66-72. PubMed ID: 1025978
    [No Abstract]   [Full Text] [Related]  

  • 4. Activities of citrate synthase and NAD+-linked and NADP+-linked isocitrate dehydrogenase in muscle from vertebrates and invertebrates.
    Alp PR; Newsholme EA; Zammit VA
    Biochem J; 1976 Mar; 154(3):689-700. PubMed ID: 8036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical properties of porcine white adipose tissue mitochondria and relevance to fatty acid oxidation.
    Koekemoer TC; Oelofsen W
    Comp Biochem Physiol B Biochem Mol Biol; 2001 Jul; 129(4):797-807. PubMed ID: 11435134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unity and diversity in some bacterial citric acid-cycle enzymes.
    Weitzman PD
    Adv Microb Physiol; 1981; 22():185-244. PubMed ID: 7036695
    [No Abstract]   [Full Text] [Related]  

  • 7. Activities of enzymes of the citric acid cycle and electron transport chain in the skeletal muscle of normal and dystrophic mice (strain 129).
    Jato-Rodriguez JJ; Hudson AJ; Strickland KP
    Enzyme; 1972; 13(5-6):286-92. PubMed ID: 4376082
    [No Abstract]   [Full Text] [Related]  

  • 8. Carnitine concentration in relation to enzyme activities and substrate utilization in human skeletal muscles.
    Cederblad G; Bylund AC; Holm J; Scherstén T
    Scand J Clin Lab Invest; 1976 Oct; 36(6):547-52. PubMed ID: 137518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clofibrate elevates enzyme activities of the tricarboxylic acid cycle in rat liver.
    Prager C; Schön HJ; Nikfardjam M; Schmid D; Untersalmberger M; Kremser K; Kramar R
    J Lipid Res; 1993 Mar; 34(3):359-64. PubMed ID: 8468521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related quantitative changes in enzyme activities of rat brain.
    Vitorica J; Andrés A; Satrústegui J; Machado A
    Neurochem Res; 1981 Feb; 6(2):127-36. PubMed ID: 7242774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activities of enzymes of the tricarboxylic acid cycle in segments of the rat nephron.
    Le Hir M; Dubach UC
    Pflugers Arch; 1982 Nov; 395(3):239-43. PubMed ID: 7155797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of the regulation of Ca2+ of the activities of the 2-oxoglutarate dehydrogenase complex and NAD+-isocitrate dehydrogenase from a variety of sources.
    McCormack JG; Denton RM
    Biochem J; 1981 May; 196(2):619-24. PubMed ID: 7032511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of levo carnitine and alpha lipoic acid in ameliorating the decline in mitochondrial enzymes during aging.
    Savitha S; Sivarajan K; Haripriya D; Kokilavani V; Panneerselvam C
    Clin Nutr; 2005 Oct; 24(5):794-800. PubMed ID: 15919137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time course of the T3- and T4-induced increase in rat soleus muscle mitochondria.
    Winder WW
    Am J Physiol; 1979 Mar; 236(3):C132-8. PubMed ID: 218461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+ ions within toluene-permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios.
    Rutter GA; Denton RM
    Biochem J; 1988 May; 252(1):181-9. PubMed ID: 3421900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activities of citrate synthase, NAD+-linked and NADP+-linked isocitrate dehydrogenases, glutamate dehydrogenase, aspartate aminotransferase and alanine aminotransferase in nervous tissues from vertebrates and invertebrates.
    Sugden PH; Newsholme EA
    Biochem J; 1975 Jul; 150(1):105-11. PubMed ID: 1003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The steady-state concentrations of citrate, isocitrate 2-oxoglutarate and malate in flight muscle and isolated mitochondria.
    Johnson RN; Hansford RG
    Biochem J; 1975 Mar; 146(3):527-35. PubMed ID: 1147907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [On metabolic regulation of initial reactions of the tricarboxylic cycle].
    Guly MF
    Ukr Biokhim Zh; 1977; 49(5):115-29. PubMed ID: 21479
    [No Abstract]   [Full Text] [Related]  

  • 19. Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart.
    Randle PJ; England PJ; Denton RM
    Biochem J; 1970 May; 117(4):677-95. PubMed ID: 5449122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium sensitive isocitrate and 2-oxoglutarate dehydrogenase activities in rat liver and AS-30D hepatoma mitochondria.
    Murphy AN; Kelleher JK; Fiskum G
    Biochem Biophys Res Commun; 1988 Dec; 157(3):1218-25. PubMed ID: 3207422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.