These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
411 related articles for article (PubMed ID: 6288023)
61. Spin-trapping of free radicals formed during in vitro and in vivo metabolism of 3-methylindole. Kubow S; Janzen EG; Bray TM J Biol Chem; 1984 Apr; 259(7):4447-51. PubMed ID: 6323473 [TBL] [Abstract][Full Text] [Related]
62. Trichloroethylene metabolism in vitro: an EPR/SPIN trapping study. Steel-Goodwin L; Pravecek TL; Carmichael AJ Hum Exp Toxicol; 1996 Nov; 15(11):878-84. PubMed ID: 8938482 [TBL] [Abstract][Full Text] [Related]
63. Multiple mechanisms for inhibition of low density lipoprotein oxidation by novel cyclic nitrone spin traps. Thomas CE; Ohlweiler DF; Kalyanaraman B J Biol Chem; 1994 Nov; 269(45):28055-61. PubMed ID: 7961741 [TBL] [Abstract][Full Text] [Related]
64. Prostaglandin H synthase-catalyzed oxidation of all-trans- and 13-cis-retinoic acid to carbon-centered and peroxyl radical intermediates. Freyaldenhoven MA; Lloyd RV; Samokyszyn VM Chem Res Toxicol; 1996 Jun; 9(4):677-81. PubMed ID: 8831809 [TBL] [Abstract][Full Text] [Related]
65. Evaluation of PBN spin-trapped radicals as early markers of lipid oxidation in mayonnaise. Merkx DWH; Plankensteiner L; Yu Y; Wierenga PA; Hennebelle M; Van Duynhoven JPM Food Chem; 2021 Jan; 334():127578. PubMed ID: 32721836 [TBL] [Abstract][Full Text] [Related]
66. Aryl radical formation during the metabolism of arylhydrazines by microsomes. Gannett PM; Shi X; Lawson T; Kolar C; Toth B Chem Res Toxicol; 1997 Dec; 10(12):1372-7. PubMed ID: 9437528 [TBL] [Abstract][Full Text] [Related]
67. Aromatic hydroxylation in PBN spin trapping by hydroxyl radicals and cytochrome P-450. Reinke LA; Moore DR; Sang H; Janzen EG; Kotake Y Free Radic Biol Med; 2000 Feb; 28(3):345-50. PubMed ID: 10699745 [TBL] [Abstract][Full Text] [Related]
68. Investigating the free radical trapping ability of NXY-059, S-PBN and PBN. Williams HE; Claybourn M; Green AR Free Radic Res; 2007 Sep; 41(9):1047-52. PubMed ID: 17729123 [TBL] [Abstract][Full Text] [Related]
69. Enhancement of carbon tetrachloride-induced liver injury by a single dose of ethanol: proton magnetic resonance imaging (MRI) studies in vivo. Towner RA; Reinke LA; Janzen EG; Yamashiro S Biochim Biophys Acta; 1991 Apr; 1096(3):222-30. PubMed ID: 2018796 [TBL] [Abstract][Full Text] [Related]
70. ESR and HPLC-EC analysis of ethanol oxidation to 1-hydroxyethyl radical: rapid reduction and quantification of POBN and PBN nitroxides. Stoyanovsky DA; Cederbaum AI Free Radic Biol Med; 1998 Sep; 25(4-5):536-45. PubMed ID: 9741590 [TBL] [Abstract][Full Text] [Related]
71. Spin trapping of a free radical intermediate formed during microsomal metabolism of hydrazine. Noda A; Noda H; Ohno K; Sendo T; Misaka A; Kanazawa Y; Isobe R; Hirata M Biochem Biophys Res Commun; 1985 Dec; 133(3):1086-91. PubMed ID: 3002363 [TBL] [Abstract][Full Text] [Related]
72. Free radical metabolism of alcohols by rat liver microsomes. Albano E; Tomasi A; Goria-Gatti L; Poli G; Vannini V; Dianzani MU Free Radic Res Commun; 1987; 3(1-5):243-9. PubMed ID: 2854526 [TBL] [Abstract][Full Text] [Related]
73. Characterization of the free radical formed in aerobic microsomal incubations containing carbon tetrachloride and NADPH. Kalyanaraman B; Mason RP; Perez-Reyes E; Chignell CF; Wolf CR; Philpot RM Biochem Biophys Res Commun; 1979 Aug; 89(4):1065-72. PubMed ID: 40551 [No Abstract] [Full Text] [Related]
74. Metabolic stability of superoxide and hydroxyl radical adducts of a cyclic nitrone toward rat liver microsomes and cytosol: A stopped-flow ESR spectroscopy study. Bézière N; Frapart Y; Rockenbauer A; Boucher JL; Mansuy D; Peyrot F Free Radic Biol Med; 2010 Aug; 49(3):437-46. PubMed ID: 20452418 [TBL] [Abstract][Full Text] [Related]
75. Metabolic stability of superoxide adducts derived from newly developed cyclic nitrone spin traps. Bézière N; Hardy M; Poulhès F; Karoui H; Tordo P; Ouari O; Frapart YM; Rockenbauer A; Boucher JL; Mansuy D; Peyrot F Free Radic Biol Med; 2014 Feb; 67():150-8. PubMed ID: 24161442 [TBL] [Abstract][Full Text] [Related]
76. Role of metallothionein in zinc(II) and chromium(III) mediated tolerance to carbon tetrachloride hepatotoxicity: evidence against a trichloromethyl radical-scavenging mechanism. Hanna PM; Kadiiska MB; Jordan SJ; Mason RP Chem Res Toxicol; 1993; 6(5):711-7. PubMed ID: 8292750 [TBL] [Abstract][Full Text] [Related]
77. Relationship of oxygen and glutathione in protection against carbon tetrachloride-induced hepatic microsomal lipid peroxidation and covalent binding in the rat. Rationale for the use of hyperbaric oxygen to treat carbon tetrachloride ingestion. Burk RF; Lane JM; Patel K J Clin Invest; 1984 Dec; 74(6):1996-2001. PubMed ID: 6511912 [TBL] [Abstract][Full Text] [Related]
78. Biological spin trapping. II. Toxicity of nitrone spin traps: dose-ranging in the rat. Janzen EG; Poyer JL; Schaefer CF; Downs PE; DuBose CM J Biochem Biophys Methods; 1995 Nov; 30(4):239-47. PubMed ID: 8621883 [TBL] [Abstract][Full Text] [Related]
79. In vivo spin-trapping of trichloromethyl radicals formed from CCl4. Lai EK; McCay PB; Noguchi T; Fong KL Biochem Pharmacol; 1979 Jul; 28(14):2231-5. PubMed ID: 227403 [No Abstract] [Full Text] [Related]
80. Metabolic activation of procarbazine. Evidence for carbon-centered free-radical intermediates. Sinha BK Biochem Pharmacol; 1984 Sep; 33(17):2777-81. PubMed ID: 6431996 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]