BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 6288039)

  • 1. Electron spin resonance--spin stabilization in enzymatic systems: detection of semiquinones produced during peroxidatic oxidation of catechols and catecholamines.
    Kalyanaraman B; Sealy RC
    Biochem Biophys Res Commun; 1982 Jun; 106(4):1119-25. PubMed ID: 6288039
    [No Abstract]   [Full Text] [Related]  

  • 2. Peroxidatic oxidation of catecholamines. A kinetic electron spin resonance investigation using the spin stabilization approach.
    Kalyanaraman B; Felix CC; Sealy RC
    J Biol Chem; 1984 Jun; 259(12):7584-9. PubMed ID: 6330064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for a peroxidatic oxidation of norepinephrine, a catecholamine, by lactoperoxidase.
    Metodiewa D; Reszka K; Dunford HB
    Biochem Biophys Res Commun; 1989 May; 160(3):1183-8. PubMed ID: 2543391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electron spin resonance study of free radicals from catechol estrogens.
    Kalyanaraman B; Hintz P; Sealy RC
    Fed Proc; 1986 Sep; 45(10):2477-84. PubMed ID: 3017766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semiquinone anion radicals from addition of amino acids, peptides, and proteins to quinones derived from oxidation of catechols and catecholamines. An ESR spin stabilization study.
    Kalyanaraman B; Premovic PI; Sealy RC
    J Biol Chem; 1987 Aug; 262(23):11080-7. PubMed ID: 3038907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tyrosinase-catalyzed oxidation of dopa and related catechol(amine)s: a kinetic electron spin resonance investigation using spin-stabilization and spin label oximetry.
    Korytowski W; Sarna T; Kalyanaraman B; Sealy RC
    Biochim Biophys Acta; 1987 Jun; 924(3):383-92. PubMed ID: 3036239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation of catechol by horseradish peroxidase and human leukocyte peroxidase: reactions of o-benzoquinone and o-benzosemiquinone.
    Sadler A; Subrahmanyam VV; Ross D
    Toxicol Appl Pharmacol; 1988 Mar; 93(1):62-71. PubMed ID: 2832975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction between ortho-semiquinones and oxygen: pulse radiolysis, electron spin resonance, and oxygen uptake studies.
    Kalyanaraman B; Korytowski W; Pilas B; Sarna T; Land EJ; Truscott TG
    Arch Biochem Biophys; 1988 Oct; 266(1):277-84. PubMed ID: 2845864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activating effect of chlorpromazine on the peroxidase-catalysed oxidation of catecholamines.
    Løvstad RA
    Gen Pharmacol; 1979; 10(6):437-40. PubMed ID: 520794
    [No Abstract]   [Full Text] [Related]  

  • 10. Electron spin resonance-spin stabilization of semiquinones produced during oxidation of epinephrine and its analogues.
    Kalyanaraman B; Felix CC; Sealy RC
    J Biol Chem; 1984 Jan; 259(1):354-8. PubMed ID: 6323406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electron spin resonance study of the novel radical cation produced during the horseradish peroxidase-catalyzed oxidation of tetramethylhydrazine.
    Kalyanaraman B; Mason RP; Sivarajah K
    Biochem Biophys Res Commun; 1982 Mar; 105(1):217-24. PubMed ID: 6284143
    [No Abstract]   [Full Text] [Related]  

  • 12. Stable free radical and benzoquinone imine metabolites of an acetaminophen analogue.
    Fischer V; Mason RP
    J Biol Chem; 1984 Aug; 259(16):10284-8. PubMed ID: 6088491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of the substituted catechols dihydroxyphenylalanine methyl ester and trihydroxyphenylalanine by lactoperoxidase and its compounds.
    Metodiewa D; Reszka K; Dunford HB
    Arch Biochem Biophys; 1989 Nov; 274(2):601-8. PubMed ID: 2552928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of free radicals produced during oxidation of etoposide (VP-16) and its catechol and quinone derivatives. An ESR Study.
    Kalyanaraman B; Nemec J; Sinha BK
    Biochemistry; 1989 May; 28(11):4839-46. PubMed ID: 2548593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of phenothiazine derivatives with horseradish peroxidase and lactoperoxidase.
    Løvstad RA
    Gen Pharmacol; 1980; 11(3):331-6. PubMed ID: 7390133
    [No Abstract]   [Full Text] [Related]  

  • 16. An electron spin resonance study of the activation of benzidine by peroxidases.
    Josephy PD; Eling TE; Mason RP
    Mol Pharmacol; 1983 May; 23(3):766-70. PubMed ID: 6306434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The oxidation and decarboxylation of retinoic acid by horseradish peroxidase.
    McKenzie RM; Nelson EC
    Biochim Biophys Acta; 1979 Jul; 574(1):1-7. PubMed ID: 476130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of porphyrin pi cation radical in zinc-substituted horseradish peroxidase.
    Kaneko Y; Tamura M; Yamazaki I
    Biochemistry; 1980 Dec; 19(25):5795-9. PubMed ID: 6257291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of myeloperoxidase in the oxidation of biologically active polyhydroxyphenols (substituted catechols).
    Metodiewa D; Dunford HB
    Eur J Biochem; 1990 Oct; 193(2):445-8. PubMed ID: 2171935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semiquinone anion radicals of catechol(amine)s, catechol estrogens, and their metal ion complexes.
    Kalyanaraman B; Felix CC; Sealy RC
    Environ Health Perspect; 1985 Dec; 64():185-98. PubMed ID: 3007089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.