These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 6288093)

  • 41. Ionophores. Chemistry, physiology and potential applications to bone biology.
    Stern PH
    Clin Orthop Relat Res; 1977; (122):273-98. PubMed ID: 65236
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of amine structure on complexation with lasalocid in model membrane systems. I. Identification of charged complexes in lipid bilayer membranes.
    Kinsel JF; Melnik EI; Lindenbaum S; Sternson LA; Ovchinnikov YuA
    Biochim Biophys Acta; 1982 Jan; 684(2):233-40. PubMed ID: 7055564
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Voltage-dependent conductance induced in thin lipid membranes by monazomycin.
    Muller RU; Finkelstein A
    J Gen Physiol; 1972 Sep; 60(3):263-84. PubMed ID: 5055789
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bilayers containing calcium ionophore A23187 form channels.
    Balasubramanian SV; Sikdar SK; Easwaran KR
    Biochem Biophys Res Commun; 1992 Dec; 189(2):1038-42. PubMed ID: 1281987
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ionophore-mediated transmembrane movement of divalent cations in small unilamellar liposomes: an evaluation of the chlortetracycline fluorescence technique and correlations with black lipid membrane studies.
    Mathew MK; Nagaraj R; Balaram P
    J Membr Biol; 1982; 65(1-2):13-7. PubMed ID: 7057457
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mobile carrier ionophores for Fe(II).
    Young SP; Gomperts BD
    Biochim Biophys Acta; 1977 Sep; 469(3):281-91. PubMed ID: 332229
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Movement of calcium through artificial lipid membranes and the effects of ionophores.
    Hyono A; Hendriks T; Daemen FJ; Bonting SL
    Biochim Biophys Acta; 1975 Apr; 389(1):34-46. PubMed ID: 1095059
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of hypoglycemic sulfonylureas on Ca2+ fluxes across lipid bilayers.
    Gylfe E; Hellman B; Arvidson G; Sandblom J
    Biochem Med; 1984 Apr; 31(2):246-53. PubMed ID: 6202299
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exchange diffusion of dopamine induced in planar lipid bilayer membranes by the ionophore X537A.
    Holz RW
    J Gen Physiol; 1977 May; 69(5):633-53. PubMed ID: 16982
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The ion selectivity of nonelectrogenic ionophores measured on a bilayer lipid membrane: nigericin, monensin, A23187 and lasalocid A.
    Antonenko YN; Yaguzhinsky LS
    Biochim Biophys Acta; 1988 Feb; 938(2):125-30. PubMed ID: 19927398
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Incorporation of calcium channels from cardiac sarcolemmal membrane vesicles into planar lipid bilayers.
    Ehrlich BE; Schen CR; Garcia ML; Kaczorowski GJ
    Proc Natl Acad Sci U S A; 1986 Jan; 83(1):193-7. PubMed ID: 2417238
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of the ionophores X-537A and A23187 on the noradrenaline output from peripheral adrenergic neurones in the presence of various divalent cations.
    Ito S; Nakazato Y; Ohga A
    Br J Pharmacol; 1978 Jan; 62(1):91-8. PubMed ID: 339982
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A high conductance cationic channel from Phaseolus vulgaris roots incorporated into planar lipid bilayers.
    Balleza D; Gómez-Lagunas F; Sánchez F; Quinto C
    Arch Biochem Biophys; 2005 Jun; 438(1):88-92. PubMed ID: 15885652
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrical properties and molecular architecture of the channel formed by Escherichia coli hemolysin in planar lipid membranes.
    Ropele M; Menestrina G
    Biochim Biophys Acta; 1989 Oct; 985(1):9-18. PubMed ID: 2477066
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dimethonium, a divalent cation that exerts only a screening effect on the electrostatic potential adjacent to negatively charged phospholipid bilayer membranes.
    McLaughlin A; Eng WK; Vaio G; Wilson T; McLaughlin S
    J Membr Biol; 1983; 76(2):183-93. PubMed ID: 6242893
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The N-terminal half of the heavy chain of botulinum type A neurotoxin forms channels in planar phospholipid bilayers.
    Blaustein RO; Germann WJ; Finkelstein A; DasGupta BR
    FEBS Lett; 1987 Dec; 226(1):115-20. PubMed ID: 2446925
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interaction of ganglioside-containing planar bilayers with serotonin and inorganic cations.
    Matinyan NS; Melikyan GB; Arakelyan VB; Kocharov SL; Prokazova NV; Avakian TM
    Biochim Biophys Acta; 1989 Sep; 984(3):313-8. PubMed ID: 2775780
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calcium ionophores A23187 and X537A affect cell agglutination by lectins and capping of lymphocyte surface immunoglobulins.
    Poste G; Nicolson GL
    Biochim Biophys Acta; 1976 Feb; 426(1):148-55. PubMed ID: 764879
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ionic channels formed by Staphylococcus aureus alpha-toxin: voltage-dependent inhibition by divalent and trivalent cations.
    Menestrina G
    J Membr Biol; 1986; 90(2):177-90. PubMed ID: 2425095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.