These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 6288124)
1. [Role of CO-binding cytochrome c in enzymatic oxidation of methane by the bacterium Methylococcus capsulatus]. Gvozdev RI; Nikonova EL; Piliashenko-Novokhatnyi AI; Shushenacheva EV; Grigorian AN Biokhimiia; 1982 Jul; 47(7):1118-24. PubMed ID: 6288124 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional structure determination of a protein supercomplex that oxidizes methane to formaldehyde in Methylococcus capsulatus (Bath). Myronova N; Kitmitto A; Collins RF; Miyaji A; Dalton H Biochemistry; 2006 Oct; 45(39):11905-14. PubMed ID: 17002291 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Lieberman RL; Rosenzweig AC Nature; 2005 Mar; 434(7030):177-82. PubMed ID: 15674245 [TBL] [Abstract][Full Text] [Related]
4. Bacterial oxidation of methane and methanol. Anthony C Adv Microb Physiol; 1986; 27():113-210. PubMed ID: 3020939 [No Abstract] [Full Text] [Related]
5. [Electron transport chain in a thermophilic methane-oxidizing culture of Methylococcus thermophilus]. Sokolova IG; Malashenko IuR; Romanovskaia VA Mikrobiologiia; 1981; 50(1):13-20. PubMed ID: 7012552 [TBL] [Abstract][Full Text] [Related]
6. Insights into the obligate methanotroph Methylococcus capsulatus. Kelly DP; Anthony C; Murrell JC Trends Microbiol; 2005 May; 13(5):195-8. PubMed ID: 15866035 [TBL] [Abstract][Full Text] [Related]
7. Characterization and structural analysis of an active particulate methane monooxygenase trimer from Methylococcus capsulatus (Bath). Kitmitto A; Myronova N; Basu P; Dalton H Biochemistry; 2005 Aug; 44(33):10954-65. PubMed ID: 16101279 [TBL] [Abstract][Full Text] [Related]
8. Transcription of nitrification genes by the methane-oxidizing bacterium, Methylococcus capsulatus strain Bath. Poret-Peterson AT; Graham JE; Gulledge J; Klotz MG ISME J; 2008 Dec; 2(12):1213-20. PubMed ID: 18650926 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Rosenzweig AC; Frederick CA; Lippard SJ; Nordlund P Nature; 1993 Dec; 366(6455):537-43. PubMed ID: 8255292 [TBL] [Abstract][Full Text] [Related]
10. Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase. Balasubramanian R; Rosenzweig AC Acc Chem Res; 2007 Jul; 40(7):573-80. PubMed ID: 17444606 [TBL] [Abstract][Full Text] [Related]
11. Remediation of chromium(VI) by a methane-oxidizing bacterium. Al Hasin A; Gurman SJ; Murphy LM; Perry A; Smith TJ; Gardiner PH Environ Sci Technol; 2010 Jan; 44(1):400-5. PubMed ID: 20039753 [TBL] [Abstract][Full Text] [Related]
12. Stopped-flow Fourier transform infrared spectroscopy of nitromethane oxidation by the diiron(IV) intermediate of methane monooxygenase. Muthusamy M; Ambundo EA; George SJ; Lippard SJ; Thorneley RN J Am Chem Soc; 2003 Sep; 125(37):11150-1. PubMed ID: 16220908 [TBL] [Abstract][Full Text] [Related]
13. Specific binding of CO to tetraheme cytochrome c3. Takayama Y; Kobayashi Y; Yahata N; Saitoh T; Hori H; Ikegami T; Akutsu H Biochemistry; 2006 Mar; 45(10):3163-9. PubMed ID: 16519511 [TBL] [Abstract][Full Text] [Related]
14. Detection and localization of two hydrogenases in Methylococcus capsulatus (Bath) and their potential role in methane metabolism. Hanczár T; Csáki R; Bodrossy L; Murrell JC; Kovács KL Arch Microbiol; 2002 Feb; 177(2):167-72. PubMed ID: 11807566 [TBL] [Abstract][Full Text] [Related]
15. Electron transfer reactions in the soluble methane monooxygenase of Methylococcus capsulatus (Bath). Lund J; Woodland MP; Dalton H Eur J Biochem; 1985 Mar; 147(2):297-305. PubMed ID: 3918864 [TBL] [Abstract][Full Text] [Related]
16. Substrate specificity of soluble methane monooxygenase. Mechanistic implications. Green J; Dalton H J Biol Chem; 1989 Oct; 264(30):17698-703. PubMed ID: 2808342 [TBL] [Abstract][Full Text] [Related]
17. [Comparative characteristics of the enzymatic systems of methane-utilizing bacteria that oxidize NH2OH and CH3OH]. Sokolov IG; Romanovskaia VA; Shkurko IuV; Malashenko IuR Mikrobiologiia; 1980; 49(2):202-9. PubMed ID: 6771495 [TBL] [Abstract][Full Text] [Related]
18. An EPR study of the dinuclear iron site in the soluble methane monooxygenase from Methylococcus capsulatus (Bath) reduced by one electron at 77 K: the effects of component interactions and the binding of small molecules to the diiron(III) center. Davydov R; Valentine AM; Komar-Panicucci S; Hoffman BM; Lippard SJ Biochemistry; 1999 Mar; 38(13):4188-97. PubMed ID: 10194335 [TBL] [Abstract][Full Text] [Related]
19. Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain. Murataliev MB; Feyereisen R Biochemistry; 1996 Nov; 35(47):15029-37. PubMed ID: 8942669 [TBL] [Abstract][Full Text] [Related]
20. Preparation and X-ray structures of metal-free, dicobalt and dimanganese forms of soluble methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath). Sazinsky MH; Merkx M; Cadieux E; Tang S; Lippard SJ Biochemistry; 2004 Dec; 43(51):16263-76. PubMed ID: 15610020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]